jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
15 kB
import functools
import os
from typing import Any, Dict, List, Optional, Tuple
import torch
from accelerate import init_empty_weights
from diffusers import (
AutoencoderKL,
CogView4Pipeline,
CogView4Transformer2DModel,
FlowMatchEulerDiscreteScheduler,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from transformers import AutoTokenizer, GlmModel
import finetrainers.functional as FF
from finetrainers.data import ImageArtifact
from finetrainers.logging import get_logger
from finetrainers.models.modeling_utils import ModelSpecification
from finetrainers.processors import CogView4GLMProcessor, ProcessorMixin
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function
logger = get_logger()
class CogView4LatentEncodeProcessor(ProcessorMixin):
r"""
Processor to encode image/video into latents using the LTX VAE.
Args:
output_names (`List[str]`):
The names of the outputs that the processor returns. The outputs are in the following order:
- latents: The latents of the input image/video.
- original_size: The original size of the input image/video.
- target_size: The target size of the input image/video.
- crop_coords: The top-left crop coordinates of the input image/video.
"""
def __init__(self, output_names: List[str]):
super().__init__()
self.output_names = output_names
assert len(self.output_names) == 4
def forward(
self,
vae: AutoencoderKL,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
_original_height: Optional[int] = None,
_original_width: Optional[int] = None,
) -> Dict[str, torch.Tensor]:
device = vae.device
dtype = vae.dtype
if video is not None:
# TODO(aryan): perhaps better would be to flatten(0, 1), but need to account for reshaping sigmas accordingly
image = video[:, 0] # [B, F, C, H, W] -> [B, 1, C, H, W]
assert image.ndim == 4, f"Expected 4D tensor, got {image.ndim}D tensor"
image = image.to(device=device, dtype=vae.dtype)
if compute_posterior:
latents = vae.encode(image).latent_dist.sample(generator=generator)
latents = latents.to(dtype=dtype)
else:
if vae.use_slicing and image.shape[0] > 1:
encoded_slices = [vae._encode(x_slice) for x_slice in image.split(1)]
moments = torch.cat(encoded_slices)
else:
moments = vae._encode(image)
latents = moments.to(dtype=dtype)
batch_size = latents.size(0)
target_height = image.size(2)
target_width = image.size(3)
original_size = torch.tensor([(_original_height, _original_width)], device=device, dtype=dtype).repeat(
batch_size, 1
)
target_size = torch.tensor([(target_height, target_width)], device=device, dtype=dtype).repeat(batch_size, 1)
crop_coords = torch.tensor([(0, 0)], device=device, dtype=dtype).repeat(batch_size, 1)
return {
self.output_names[0]: latents,
self.output_names[1]: original_size,
self.output_names[2]: target_size,
self.output_names[3]: crop_coords,
}
class CogView4ModelSpecification(ModelSpecification):
def __init__(
self,
pretrained_model_name_or_path: str = "THUDM/CogView4-6B",
tokenizer_id: Optional[str] = None,
text_encoder_id: Optional[str] = None,
transformer_id: Optional[str] = None,
vae_id: Optional[str] = None,
text_encoder_dtype: torch.dtype = torch.bfloat16,
transformer_dtype: torch.dtype = torch.bfloat16,
vae_dtype: torch.dtype = torch.bfloat16,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
condition_model_processors: List[ProcessorMixin] = None,
latent_model_processors: List[ProcessorMixin] = None,
**kwargs,
) -> None:
super().__init__(
pretrained_model_name_or_path=pretrained_model_name_or_path,
tokenizer_id=tokenizer_id,
text_encoder_id=text_encoder_id,
transformer_id=transformer_id,
vae_id=vae_id,
text_encoder_dtype=text_encoder_dtype,
transformer_dtype=transformer_dtype,
vae_dtype=vae_dtype,
revision=revision,
cache_dir=cache_dir,
)
if condition_model_processors is None:
condition_model_processors = [CogView4GLMProcessor(["encoder_hidden_states"])]
if latent_model_processors is None:
latent_model_processors = [
CogView4LatentEncodeProcessor(["latents", "original_size", "target_size", "crop_coords"])
]
self.condition_model_processors = condition_model_processors
self.latent_model_processors = latent_model_processors
@property
def _resolution_dim_keys(self):
return {"latents": (2, 3)}
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.tokenizer_id is not None:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
)
if self.text_encoder_id is not None:
text_encoder = GlmModel.from_pretrained(
self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
)
else:
text_encoder = GlmModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=self.text_encoder_dtype,
**common_kwargs,
)
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.vae_id is not None:
vae = AutoencoderKL.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
else:
vae = AutoencoderKL.from_pretrained(
self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
)
return {"vae": vae}
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.transformer_id is not None:
transformer = CogView4Transformer2DModel.from_pretrained(
self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
)
else:
transformer = CogView4Transformer2DModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=self.transformer_dtype,
**common_kwargs,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {"transformer": transformer, "scheduler": scheduler}
def load_pipeline(
self,
tokenizer: Optional[AutoTokenizer] = None,
text_encoder: Optional[GlmModel] = None,
transformer: Optional[CogView4Transformer2DModel] = None,
vae: Optional[AutoencoderKL] = None,
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
enable_slicing: bool = False,
enable_tiling: bool = False,
enable_model_cpu_offload: bool = False,
training: bool = False,
**kwargs,
) -> CogView4Pipeline:
components = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"transformer": transformer,
"vae": vae,
# Load the scheduler based on CogView4's config instead of using the default initialization being used for training
# "scheduler": scheduler,
}
components = get_non_null_items(components)
pipe = CogView4Pipeline.from_pretrained(
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
)
pipe.text_encoder.to(self.text_encoder_dtype)
pipe.vae.to(self.vae_dtype)
_enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
if not training:
pipe.transformer.to(self.transformer_dtype)
if enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
return pipe
@torch.no_grad()
def prepare_conditions(
self,
tokenizer: AutoTokenizer,
text_encoder: GlmModel,
caption: str,
max_sequence_length: int = 1024,
**kwargs,
) -> Dict[str, Any]:
conditions = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"caption": caption,
"max_sequence_length": max_sequence_length,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_conditions(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
@torch.no_grad()
def prepare_latents(
self,
vae: AutoencoderKL,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
_original_height: Optional[int] = None,
_original_width: Optional[int] = None,
**kwargs,
) -> Dict[str, torch.Tensor]:
conditions = {
"vae": vae,
"image": image,
"video": video,
"generator": generator,
"compute_posterior": compute_posterior,
"_original_height": _original_height,
"_original_width": _original_width,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_latents(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
def forward(
self,
transformer: CogView4Transformer2DModel,
condition_model_conditions: Dict[str, torch.Tensor],
latent_model_conditions: Dict[str, torch.Tensor],
sigmas: torch.Tensor,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, ...]:
base_image_sequence_length = 256
base_shift = 0.25
max_shift = 0.75
if compute_posterior:
latents = latent_model_conditions.pop("latents")
else:
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
latents = posterior.sample(generator=generator)
del posterior
if getattr(self.vae_config, "shift_factor", None) is not None:
latents = (latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
else:
latents = latents * self.vae_config.scaling_factor
noise = torch.zeros_like(latents).normal_(generator=generator)
timesteps = (sigmas.flatten() * 1000.0).long()
image_sequence_length = latents.size(2) * latents.size(3) // self.transformer_config.patch_size**2
mu = (image_sequence_length / base_image_sequence_length) ** 0.5
mu = mu * max_shift + base_shift
shifted_sigmas = mu / (mu + (1 / sigmas - 1) ** 1.0)
noisy_latents = FF.flow_match_xt(latents, noise, shifted_sigmas)
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
pred = transformer(
**latent_model_conditions,
**condition_model_conditions,
timestep=timesteps,
return_dict=False,
)[0]
target = FF.flow_match_target(noise, latents)
# NOTE: shifted_sigmas loss weighting seems to work better than sigmas. Needs more investigation
# but let's keep it this way for now. Longer training runs should reveal more insights.
# return pred, target, sigmas
return pred, target, shifted_sigmas
def validation(
self,
pipeline: CogView4Pipeline,
prompt: str,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
**kwargs,
) -> List[ArtifactType]:
generation_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"generator": generator,
"return_dict": True,
"output_type": "pil",
}
generation_kwargs = get_non_null_items(generation_kwargs)
image = pipeline(**generation_kwargs).images[0]
return [ImageArtifact(value=image)]
def _save_lora_weights(
self,
directory: str,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
metadata: Optional[Dict[str, str]] = None,
*args,
**kwargs,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
CogView4Pipeline.save_lora_weights(
directory,
transformer_state_dict,
save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
safe_serialization=True,
)
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def _save_model(
self,
directory: str,
transformer: CogView4Transformer2DModel,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
with init_empty_weights():
transformer_copy = CogView4Transformer2DModel.from_config(transformer.config)
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))