jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
15.8 kB
import functools
import os
from typing import Any, Dict, List, Optional, Tuple
import safetensors.torch
import torch
from accelerate import init_empty_weights
from diffusers import AutoencoderKL, CogView4Pipeline, CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler
from transformers import AutoTokenizer, GlmModel
import finetrainers.functional as FF
from finetrainers.data import ImageArtifact
from finetrainers.models.modeling_utils import ControlModelSpecification
from finetrainers.models.utils import DiagonalGaussianDistribution, _expand_linear_with_zeroed_weights
from finetrainers.patches.dependencies.diffusers.control import control_channel_concat
from finetrainers.processors import CogView4GLMProcessor, ProcessorMixin
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function
from .base_specification import CogView4LatentEncodeProcessor
class CogView4ControlModelSpecification(ControlModelSpecification):
def __init__(
self,
pretrained_model_name_or_path: str = "THUDM/CogView4-6B",
tokenizer_id: Optional[str] = None,
text_encoder_id: Optional[str] = None,
transformer_id: Optional[str] = None,
vae_id: Optional[str] = None,
text_encoder_dtype: torch.dtype = torch.bfloat16,
transformer_dtype: torch.dtype = torch.bfloat16,
vae_dtype: torch.dtype = torch.bfloat16,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
condition_model_processors: List[ProcessorMixin] = None,
latent_model_processors: List[ProcessorMixin] = None,
control_model_processors: List[ProcessorMixin] = None,
**kwargs,
) -> None:
super().__init__(
pretrained_model_name_or_path=pretrained_model_name_or_path,
tokenizer_id=tokenizer_id,
text_encoder_id=text_encoder_id,
transformer_id=transformer_id,
vae_id=vae_id,
text_encoder_dtype=text_encoder_dtype,
transformer_dtype=transformer_dtype,
vae_dtype=vae_dtype,
revision=revision,
cache_dir=cache_dir,
)
if condition_model_processors is None:
condition_model_processors = [CogView4GLMProcessor(["encoder_hidden_states"])]
if latent_model_processors is None:
latent_model_processors = [
CogView4LatentEncodeProcessor(["latents", "original_size", "target_size", "crop_coords"])
]
if control_model_processors is None:
control_model_processors = [
CogView4LatentEncodeProcessor(["control_latents", "original_size", "target_size", "crop_coords"])
]
self.condition_model_processors = condition_model_processors
self.latent_model_processors = latent_model_processors
self.control_model_processors = control_model_processors
@property
def control_injection_layer_name(self):
return "patch_embed.proj"
@property
def _resolution_dim_keys(self):
return {"latents": (2, 3)}
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.tokenizer_id is not None:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
)
if self.text_encoder_id is not None:
text_encoder = GlmModel.from_pretrained(
self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
)
else:
text_encoder = GlmModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=self.text_encoder_dtype,
**common_kwargs,
)
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.vae_id is not None:
vae = AutoencoderKL.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
else:
vae = AutoencoderKL.from_pretrained(
self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
)
return {"vae": vae}
def load_diffusion_models(self, new_in_features: int) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.transformer_id is not None:
transformer = CogView4Transformer2DModel.from_pretrained(
self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
)
else:
transformer = CogView4Transformer2DModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=self.transformer_dtype,
**common_kwargs,
)
actual_new_in_features = new_in_features * transformer.config.patch_size**2
transformer.patch_embed.proj = _expand_linear_with_zeroed_weights(
transformer.patch_embed.proj, new_in_features=actual_new_in_features
)
transformer.register_to_config(in_channels=new_in_features)
scheduler = FlowMatchEulerDiscreteScheduler()
return {"transformer": transformer, "scheduler": scheduler}
def load_pipeline(
self,
tokenizer: Optional[AutoTokenizer] = None,
text_encoder: Optional[GlmModel] = None,
transformer: Optional[CogView4Transformer2DModel] = None,
vae: Optional[AutoencoderKL] = None,
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
enable_slicing: bool = False,
enable_tiling: bool = False,
enable_model_cpu_offload: bool = False,
training: bool = False,
**kwargs,
) -> CogView4Pipeline:
components = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"transformer": transformer,
"vae": vae,
# Load the scheduler based on CogView4's config instead of using the default initialization being used for training
# "scheduler": scheduler,
}
components = get_non_null_items(components)
pipe = CogView4Pipeline.from_pretrained(
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
)
pipe.text_encoder.to(self.text_encoder_dtype)
pipe.vae.to(self.vae_dtype)
_enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
if not training:
pipe.transformer.to(self.transformer_dtype)
if enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
return pipe
@torch.no_grad()
def prepare_conditions(
self,
tokenizer: AutoTokenizer,
text_encoder: GlmModel,
caption: str,
max_sequence_length: int = 1024,
**kwargs,
) -> Dict[str, Any]:
conditions = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"caption": caption,
"max_sequence_length": max_sequence_length,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_conditions(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
@torch.no_grad()
def prepare_latents(
self,
vae: AutoencoderKL,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
control_image: Optional[torch.Tensor] = None,
control_video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
_original_height: Optional[int] = None,
_original_width: Optional[int] = None,
**kwargs,
) -> Dict[str, torch.Tensor]:
common_kwargs = {
"vae": vae,
"generator": generator,
"compute_posterior": compute_posterior,
"_original_height": _original_height,
"_original_width": _original_width,
**kwargs,
}
conditions = {"image": image, "video": video, **common_kwargs}
input_keys = set(conditions.keys())
conditions = ControlModelSpecification.prepare_latents(self, self.latent_model_processors, **conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
control_conditions = {"image": control_image, "video": control_video, **common_kwargs}
input_keys = set(control_conditions.keys())
control_conditions = ControlModelSpecification.prepare_latents(
self, self.control_model_processors, **control_conditions
)
control_conditions = {k: v for k, v in control_conditions.items() if k not in input_keys}
return {**control_conditions, **conditions}
def forward(
self,
transformer: CogView4Transformer2DModel,
condition_model_conditions: Dict[str, torch.Tensor],
latent_model_conditions: Dict[str, torch.Tensor],
sigmas: torch.Tensor,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, ...]:
base_image_sequence_length = 256
base_shift = 0.25
max_shift = 0.75
if compute_posterior:
latents = latent_model_conditions.pop("latents")
control_latents = latent_model_conditions.pop("control_latents")
else:
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
latents = posterior.sample(generator=generator)
del posterior
control_posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("control_latents"))
control_latents = control_posterior.sample(generator=generator)
del control_posterior
if getattr(self.vae_config, "shift_factor") is not None:
latents = (latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
control_latents = (control_latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
noise = torch.zeros_like(latents).normal_(generator=generator)
timesteps = (sigmas.flatten() * 1000.0).long()
image_sequence_length = latents.size(2) * latents.size(3) // self.transformer_config.patch_size**2
mu = (image_sequence_length / base_image_sequence_length) ** 0.5
mu = mu * max_shift + base_shift
shifted_sigmas = mu / (mu + (1 / sigmas - 1) ** 1.0)
noisy_latents = FF.flow_match_xt(latents, noise, shifted_sigmas)
noisy_latents = torch.cat([noisy_latents, control_latents], dim=1)
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
pred = transformer(
**latent_model_conditions,
**condition_model_conditions,
timestep=timesteps,
return_dict=False,
)[0]
target = FF.flow_match_target(noise, latents)
# NOTE: shifted_sigmas loss weighting seems to work better than sigmas. Needs more investigation
# but let's keep it this way for now. Longer training runs should reveal more insights.
# return pred, target, sigmas
return pred, target, shifted_sigmas
def validation(
self,
pipeline: CogView4Pipeline,
prompt: str,
control_image: torch.Tensor,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
**kwargs,
) -> List[ArtifactType]:
with torch.no_grad():
dtype = pipeline.vae.dtype
device = pipeline._execution_device
in_channels = self.transformer_config.in_channels # We need to use the original in_channels
latents = pipeline.prepare_latents(1, in_channels, height, width, dtype, device, generator)
control_image = pipeline.image_processor.preprocess(control_image, height=height, width=width)
control_image = control_image.to(device=device, dtype=dtype)
control_latents = pipeline.vae.encode(control_image).latent_dist.sample(generator=generator)
if getattr(self.vae_config, "shift_factor") is not None:
control_latents = (control_latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
generation_kwargs = {
"latents": latents,
"prompt": prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"generator": generator,
"return_dict": True,
"output_type": "pil",
}
generation_kwargs = get_non_null_items(generation_kwargs)
with control_channel_concat(pipeline.transformer, ["hidden_states"], [control_latents], dims=[1]):
image = pipeline(**generation_kwargs).images[0]
return [ImageArtifact(value=image)]
def _save_lora_weights(
self,
directory: str,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
norm_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
metadata: Optional[Dict[str, str]] = None,
*args,
**kwargs,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
CogView4Pipeline.save_lora_weights(
directory,
transformer_state_dict,
save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
safe_serialization=True,
)
if norm_state_dict is not None:
safetensors.torch.save_file(norm_state_dict, os.path.join(directory, "norm_state_dict.safetensors"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def _save_model(
self,
directory: str,
transformer: CogView4Transformer2DModel,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
with init_empty_weights():
transformer_copy = CogView4Transformer2DModel.from_config(transformer.config)
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
@property
def _original_control_layer_in_features(self):
return self.transformer_config.in_channels
@property
def _original_control_layer_out_features(self):
return self.transformer_config.num_attention_heads * self.transformer_config.attention_head_dim
@property
def _qk_norm_identifiers(self):
return ["attn1.norm_q", "attn1.norm_k"]