jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
20.9 kB
import functools
import os
import random
from typing import Any, Dict, List, Optional, Tuple
import torch
from accelerate import init_empty_weights
from diffusers import (
AutoencoderKLLTXVideo,
FlowMatchEulerDiscreteScheduler,
LTXImageToVideoPipeline,
LTXPipeline,
LTXVideoTransformer3DModel,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from PIL.Image import Image
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
import finetrainers.functional as FF
from finetrainers.data import VideoArtifact
from finetrainers.logging import get_logger
from finetrainers.models.modeling_utils import ModelSpecification
from finetrainers.parallel import ParallelBackendEnum
from finetrainers.processors import ProcessorMixin, T5Processor
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function
logger = get_logger()
class LTXLatentEncodeProcessor(ProcessorMixin):
r"""
Processor to encode image/video into latents using the LTX VAE.
Args:
output_names (`List[str]`):
The names of the outputs that the processor returns. The outputs are in the following order:
- latents: The latents of the input image/video.
- num_frames: The number of frames in the input video.
- height: The height of the input image/video.
- width: The width of the input image/video.
- latents_mean: The latent channel means from the VAE state dict.
- latents_std: The latent channel standard deviations from the VAE state dict.
"""
def __init__(self, output_names: List[str]):
super().__init__()
self.output_names = output_names
assert len(self.output_names) == 6
def forward(
self,
vae: AutoencoderKLLTXVideo,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
) -> Dict[str, torch.Tensor]:
device = vae.device
dtype = vae.dtype
if image is not None:
video = image.unsqueeze(1)
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
video = video.to(device=device, dtype=vae.dtype)
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
if compute_posterior:
latents = vae.encode(video).latent_dist.sample(generator=generator)
latents = latents.to(dtype=dtype)
else:
if vae.use_slicing and video.shape[0] > 1:
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
moments = torch.cat(encoded_slices)
else:
moments = vae._encode(video)
latents = moments.to(dtype=dtype)
_, _, num_frames, height, width = latents.shape
return {
self.output_names[0]: latents,
self.output_names[1]: num_frames,
self.output_names[2]: height,
self.output_names[3]: width,
self.output_names[4]: vae.latents_mean,
self.output_names[5]: vae.latents_std,
}
class LTXVideoModelSpecification(ModelSpecification):
def __init__(
self,
pretrained_model_name_or_path: str = "Lightricks/LTX-Video",
tokenizer_id: Optional[str] = None,
text_encoder_id: Optional[str] = None,
transformer_id: Optional[str] = None,
vae_id: Optional[str] = None,
text_encoder_dtype: torch.dtype = torch.bfloat16,
transformer_dtype: torch.dtype = torch.bfloat16,
vae_dtype: torch.dtype = torch.bfloat16,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
condition_model_processors: List[ProcessorMixin] = None,
latent_model_processors: List[ProcessorMixin] = None,
**kwargs,
) -> None:
super().__init__(
pretrained_model_name_or_path=pretrained_model_name_or_path,
tokenizer_id=tokenizer_id,
text_encoder_id=text_encoder_id,
transformer_id=transformer_id,
vae_id=vae_id,
text_encoder_dtype=text_encoder_dtype,
transformer_dtype=transformer_dtype,
vae_dtype=vae_dtype,
revision=revision,
cache_dir=cache_dir,
)
if condition_model_processors is None:
condition_model_processors = [T5Processor(["encoder_hidden_states", "encoder_attention_mask"])]
if latent_model_processors is None:
latent_model_processors = [
LTXLatentEncodeProcessor(["latents", "num_frames", "height", "width", "latents_mean", "latents_std"])
]
self.condition_model_processors = condition_model_processors
self.latent_model_processors = latent_model_processors
@property
def _resolution_dim_keys(self):
return {"latents": (2, 3, 4)}
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.tokenizer_id is not None:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
else:
tokenizer = T5Tokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
)
if self.text_encoder_id is not None:
text_encoder = AutoModel.from_pretrained(
self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
)
else:
text_encoder = T5EncoderModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=self.text_encoder_dtype,
**common_kwargs,
)
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.vae_id is not None:
vae = AutoencoderKLLTXVideo.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
else:
vae = AutoencoderKLLTXVideo.from_pretrained(
self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
)
return {"vae": vae}
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.transformer_id is not None:
transformer = LTXVideoTransformer3DModel.from_pretrained(
self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
)
else:
transformer = LTXVideoTransformer3DModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=self.transformer_dtype,
**common_kwargs,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {"transformer": transformer, "scheduler": scheduler}
def load_pipeline(
self,
tokenizer: Optional[T5Tokenizer] = None,
text_encoder: Optional[T5EncoderModel] = None,
transformer: Optional[LTXVideoTransformer3DModel] = None,
vae: Optional[AutoencoderKLLTXVideo] = None,
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
enable_slicing: bool = False,
enable_tiling: bool = False,
enable_model_cpu_offload: bool = False,
training: bool = False,
**kwargs,
) -> LTXPipeline:
components = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
}
components = get_non_null_items(components)
pipe = LTXPipeline.from_pretrained(
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
)
pipe.text_encoder.to(self.text_encoder_dtype)
pipe.vae.to(self.vae_dtype)
_enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
if not training:
pipe.transformer.to(self.transformer_dtype)
if enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
return pipe
@torch.no_grad()
def prepare_conditions(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
caption: str,
max_sequence_length: int = 128,
**kwargs,
) -> Dict[str, Any]:
conditions = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"caption": caption,
"max_sequence_length": max_sequence_length,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_conditions(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
@torch.no_grad()
def prepare_latents(
self,
vae: AutoencoderKLLTXVideo,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Dict[str, torch.Tensor]:
conditions = {
"vae": vae,
"image": image,
"video": video,
"generator": generator,
"compute_posterior": compute_posterior,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_latents(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
def forward(
self,
transformer: LTXVideoTransformer3DModel,
condition_model_conditions: Dict[str, torch.Tensor],
latent_model_conditions: Dict[str, torch.Tensor],
sigmas: torch.Tensor,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, ...]:
# TODO(aryan): make this configurable? Should it be?
first_frame_conditioning_p = 0.1
min_first_frame_sigma = 0.25
if compute_posterior:
latents = latent_model_conditions.pop("latents")
else:
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
latents = posterior.sample(generator=generator)
del posterior
latents_mean = latent_model_conditions.pop("latents_mean")
latents_std = latent_model_conditions.pop("latents_std")
latents = self._normalize_latents(latents, latents_mean, latents_std)
noise = torch.zeros_like(latents).normal_(generator=generator)
if random.random() < first_frame_conditioning_p:
# Based on Section 2.4 of the paper, it mentions that the first frame timesteps should be a small random value.
# Making as estimated guess, we limit the sigmas to be at least 0.2.
# torch.rand_like returns values in [0, 1). We want to make sure that the first frame sigma is <= actual sigmas
# for image conditioning. In order to do this, we rescale by multiplying with sigmas so the range is [0, sigmas).
first_frame_sigma = torch.rand_like(sigmas) * sigmas
first_frame_sigma = torch.min(first_frame_sigma, sigmas.new_full(sigmas.shape, min_first_frame_sigma))
latents_first_frame, latents_rest = latents[:, :, :1], latents[:, :, 1:]
noisy_latents_first_frame = FF.flow_match_xt(latents_first_frame, noise[:, :, :1], first_frame_sigma)
noisy_latents_remaining = FF.flow_match_xt(latents_rest, noise[:, :, 1:], sigmas)
noisy_latents = torch.cat([noisy_latents_first_frame, noisy_latents_remaining], dim=2)
else:
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
patch_size = self.transformer_config.patch_size
patch_size_t = self.transformer_config.patch_size_t
latents = self._pack_latents(latents, patch_size, patch_size_t)
noise = self._pack_latents(noise, patch_size, patch_size_t)
noisy_latents = self._pack_latents(noisy_latents, patch_size, patch_size_t)
sigmas = sigmas.view(-1, 1, 1).expand(-1, *noisy_latents.shape[1:-1], -1)
timesteps = (sigmas * 1000.0).long()
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
# TODO(aryan): make this configurable
frame_rate = 25
temporal_compression_ratio = 8
vae_spatial_compression_ratio = 32
latent_frame_rate = frame_rate / temporal_compression_ratio
rope_interpolation_scale = [
1 / latent_frame_rate,
vae_spatial_compression_ratio,
vae_spatial_compression_ratio,
]
pred = transformer(
**latent_model_conditions,
**condition_model_conditions,
timestep=timesteps,
rope_interpolation_scale=rope_interpolation_scale,
return_dict=False,
)[0]
target = FF.flow_match_target(noise, latents)
return pred, target, sigmas
def validation(
self,
pipeline: LTXPipeline,
prompt: str,
image: Optional[Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: Optional[int] = None,
frame_rate: int = 25,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
**kwargs,
) -> List[ArtifactType]:
if image is not None:
pipeline = LTXImageToVideoPipeline.from_pipe(pipeline)
generation_kwargs = {
"prompt": prompt,
"image": image,
"height": height,
"width": width,
"num_frames": num_frames,
"frame_rate": frame_rate,
"num_inference_steps": num_inference_steps,
"generator": generator,
"return_dict": True,
"output_type": "pil",
}
generation_kwargs = get_non_null_items(generation_kwargs)
video = pipeline(**generation_kwargs).frames[0]
return [VideoArtifact(value=video)]
def _save_lora_weights(
self,
directory: str,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
metadata: Optional[Dict[str, str]] = None,
*args,
**kwargs,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
LTXPipeline.save_lora_weights(
directory,
transformer_state_dict,
save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
safe_serialization=True,
)
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def _save_model(
self,
directory: str,
transformer: LTXVideoTransformer3DModel,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
with init_empty_weights():
transformer_copy = LTXVideoTransformer3DModel.from_config(transformer.config)
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def apply_tensor_parallel(
self,
backend: ParallelBackendEnum,
device_mesh: torch.distributed.DeviceMesh,
transformer: LTXVideoTransformer3DModel,
**kwargs,
) -> None:
if backend == ParallelBackendEnum.PTD:
_apply_tensor_parallel_ptd(device_mesh, transformer)
else:
raise NotImplementedError(f"Parallel backend {backend} is not supported for LTXVideoModelSpecification")
@staticmethod
def _normalize_latents(
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
) -> torch.Tensor:
# Normalize latents across the channel dimension [B, C, F, H, W]
batch_size = latents.shape[0]
latents_mean = latents_mean.view(batch_size, -1, 1, 1, 1).to(device=latents.device)
latents_std = latents_std.view(batch_size, -1, 1, 1, 1).to(device=latents.device)
latents = ((latents.float() - latents_mean) * scaling_factor / latents_std).to(latents)
return latents
@staticmethod
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
# The patch dimensions are then permuted and collapsed into the channel dimension of shape:
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
batch_size, num_channels, num_frames, height, width = latents.shape
post_patch_num_frames = num_frames // patch_size_t
post_patch_height = height // patch_size
post_patch_width = width // patch_size
latents = latents.reshape(
batch_size,
-1,
post_patch_num_frames,
patch_size_t,
post_patch_height,
patch_size,
post_patch_width,
patch_size,
)
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
return latents
def _apply_tensor_parallel_ptd(
device_mesh: torch.distributed.device_mesh.DeviceMesh, transformer: LTXVideoTransformer3DModel
) -> None:
from torch.distributed.tensor.parallel import parallelize_module
from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel
transformer_plan = {
# ===== Condition embeddings =====
# "time_embed.emb.timestep_embedder.linear_1": ColwiseParallel(),
# "time_embed.emb.timestep_embedder.linear_2": RowwiseParallel(output_layouts=Shard(-1)),
# "time_embed.linear": ColwiseParallel(input_layouts=Shard(-1), output_layouts=Replicate()),
# "time_embed": PrepareModuleOutput(output_layouts=(Replicate(), Shard(-1)), desired_output_layouts=(Replicate(), Replicate())),
# "caption_projection.linear_1": ColwiseParallel(),
# "caption_projection.linear_2": RowwiseParallel(),
# "rope": PrepareModuleOutput(output_layouts=(Replicate(), Replicate()), desired_output_layouts=(Shard(1), Shard(1)), use_local_output=False),
# ===== =====
}
for block in transformer.transformer_blocks:
block_plan = {}
# ===== Attention =====
# 8 all-to-all, 3 all-reduce
# block_plan["attn1.to_q"] = ColwiseParallel(use_local_output=False)
# block_plan["attn1.to_k"] = ColwiseParallel(use_local_output=False)
# block_plan["attn1.to_v"] = ColwiseParallel(use_local_output=False)
# block_plan["attn1.norm_q"] = SequenceParallel()
# block_plan["attn1.norm_k"] = SequenceParallel()
# block_plan["attn1.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
# block_plan["attn2.to_q"] = ColwiseParallel(use_local_output=False)
# block_plan["attn2.to_k"] = ColwiseParallel(use_local_output=False)
# block_plan["attn2.to_v"] = ColwiseParallel(use_local_output=False)
# block_plan["attn2.norm_q"] = SequenceParallel()
# block_plan["attn2.norm_k"] = SequenceParallel()
# block_plan["attn2.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
# ===== =====
block_plan["ff.net.0.proj"] = ColwiseParallel()
block_plan["ff.net.2"] = RowwiseParallel()
parallelize_module(block, device_mesh, block_plan)
parallelize_module(transformer, device_mesh, transformer_plan)