jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
#!/bin/bash
set -e -x
# export TORCH_LOGS="+dynamo,recompiles,graph_breaks"
# export TORCHDYNAMO_VERBOSE=1
export WANDB_MODE="offline"
export NCCL_P2P_DISABLE=1
export TORCH_NCCL_ENABLE_MONITORING=0
export FINETRAINERS_LOG_LEVEL="INFO"
# Finetrainers supports multiple backends for distributed training. Select your favourite and benchmark the differences!
# BACKEND="accelerate"
BACKEND="ptd"
# In this setting, I'm using all 8 GPUs on a 8-GPU node for training
NUM_GPUS=8
CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
# Check the JSON files for the expected JSON format
TRAINING_DATASET_CONFIG="examples/training/sft/cogview4/the_simpsons/training.json"
VALIDATION_DATASET_FILE="examples/training/sft/cogview4/the_simpsons/validation.json"
# Depending on how many GPUs you have available, choose your degree of parallelism and technique!
DDP_1="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 1 --cp_degree 1 --tp_degree 1"
DDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 1 --cp_degree 1 --tp_degree 1"
DDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 4 --dp_shards 1 --cp_degree 1 --tp_degree 1"
FSDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 2 --cp_degree 1 --tp_degree 1"
FSDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 4 --cp_degree 1 --tp_degree 1"
HSDP_2_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 2 --cp_degree 1 --tp_degree 1"
HSDP_4_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 4 --dp_shards 2 --cp_degree 1 --tp_degree 1"
# Parallel arguments
parallel_cmd=(
$HSDP_4_2
)
# Model arguments
model_cmd=(
--model_name "cogview4"
--pretrained_model_name_or_path "THUDM/CogView4-6B"
)
# Dataset arguments
# Here, we know that the dataset size if about ~80 images. In `training.json`, we duplicate the same
# dataset 3 times for multi-resolution training. This gives us a total of about 240 images. Since
# we're using 2 GPUs for training, we can split the data into 120 images per GPU and precompute
# all embeddings at once, instead of doing it on-the-fly which would be slower (the ideal usecase
# of not using `--precomputation_once` is when you're training on large datasets)
dataset_cmd=(
--dataset_config $TRAINING_DATASET_CONFIG
--dataset_shuffle_buffer_size 32
)
# Dataloader arguments
dataloader_cmd=(
--dataloader_num_workers 0
)
# Diffusion arguments
diffusion_cmd=(
--flow_weighting_scheme "logit_normal"
)
# Training arguments
# We target just the attention projections layers for LoRA training here.
# You can modify as you please and target any layer (regex is supported)
training_cmd=(
--training_type "lora"
--seed 42
--batch_size 1
--train_steps 5000
--rank 128
--lora_alpha 128
--target_modules "transformer_blocks.*(to_q|to_k|to_v|to_out.0)"
--gradient_accumulation_steps 1
--gradient_checkpointing
--checkpointing_steps 1000
--checkpointing_limit 2
# --resume_from_checkpoint 3000
--enable_slicing
--enable_tiling
)
# Optimizer arguments
optimizer_cmd=(
--optimizer "adamw"
--lr 1e-5
--lr_scheduler "constant_with_warmup"
--lr_warmup_steps 2000
--lr_num_cycles 1
--beta1 0.9
--beta2 0.99
--weight_decay 1e-4
--epsilon 1e-8
--max_grad_norm 1.0
)
# Validation arguments
validation_cmd=(
--validation_dataset_file "$VALIDATION_DATASET_FILE"
--validation_steps 500
)
# Miscellaneous arguments
miscellaneous_cmd=(
--tracker_name "finetrainers-cogview4"
--output_dir "/fsx/aryan/cogview4"
--init_timeout 600
--nccl_timeout 600
--report_to "wandb"
)
# Execute the training script
if [ "$BACKEND" == "accelerate" ]; then
ACCELERATE_CONFIG_FILE=""
if [ "$NUM_GPUS" == 1 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_1.yaml"
elif [ "$NUM_GPUS" == 2 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_2.yaml"
elif [ "$NUM_GPUS" == 4 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_4.yaml"
elif [ "$NUM_GPUS" == 8 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_8.yaml"
fi
accelerate launch --config_file "$ACCELERATE_CONFIG_FILE" --gpu_ids $CUDA_VISIBLE_DEVICES train.py \
"${parallel_cmd[@]}" \
"${model_cmd[@]}" \
"${dataset_cmd[@]}" \
"${dataloader_cmd[@]}" \
"${diffusion_cmd[@]}" \
"${training_cmd[@]}" \
"${optimizer_cmd[@]}" \
"${validation_cmd[@]}" \
"${miscellaneous_cmd[@]}"
elif [ "$BACKEND" == "ptd" ]; then
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
torchrun \
--standalone \
--nnodes=1 \
--nproc_per_node=$NUM_GPUS \
--rdzv_backend c10d \
--rdzv_endpoint="localhost:0" \
train.py \
"${parallel_cmd[@]}" \
"${model_cmd[@]}" \
"${dataset_cmd[@]}" \
"${dataloader_cmd[@]}" \
"${diffusion_cmd[@]}" \
"${training_cmd[@]}" \
"${optimizer_cmd[@]}" \
"${validation_cmd[@]}" \
"${miscellaneous_cmd[@]}"
fi
echo -ne "-------------------- Finished executing script --------------------\n\n"