Spaces:
Running
Running
from contextlib import contextmanager | |
from typing import Any, Callable, Dict, List, Optional | |
import torch | |
from finetrainers.trackers import DummyTracker, TrackerType, initialize_trackers | |
class BaseParallelBackend: | |
r""" | |
Base class that contains properties and methods that should be implemented by different parallel backends. | |
""" | |
def __init__(self): | |
self.tracker = None | |
def enable_determinism(self, seed: int) -> None: | |
raise NotImplementedError("Method `enable_determinism` must be implemented by subclass.") | |
def apply_ddp(self, *args, **kwargs) -> torch.nn.Module: | |
raise NotImplementedError("Method `apply_ddp` must be implemented by subclass.") | |
def apply_fsdp2(self, *args, **kwargs) -> torch.nn.Module: | |
raise NotImplementedError("Method `apply_fsdp2` must be implemented by subclass.") | |
def apply_context_parallel(self, *args, **kwargs) -> torch.nn.Module: | |
raise NotImplementedError("Method `apply_context_parallel` must be implemented by subclass.") | |
def prepare_model(self, *args, **kwargs) -> Any: | |
raise NotImplementedError("Method `prepare_model` must be implemented by subclass.") | |
def prepare_dataset(self, *args, **kwargs) -> Any: | |
raise NotImplementedError("Method `prepare_dataset` must be implemented by subclass.") | |
def prepare_dataloader(self, *args, **kwargs) -> Any: | |
raise NotImplementedError("Method `prepare_dataloader` must be implemented by subclass.") | |
def prepare_optimizer(self, *args, **kwargs) -> Any: | |
raise NotImplementedError("Method `prepare_optimizer` must be implemented by subclass.") | |
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh: | |
raise NotImplementedError("Method `get_mesh` must be implemented by subclass.") | |
def get_checkpointer(self, *args, **kwargs) -> None: | |
raise NotImplementedError("Method `get_checkpointer` must be implemented by subclass.") | |
def initialize_trackers( | |
self, trackers: List[str], experiment_name: str, config: Dict[str, Any], log_dir: str | |
) -> TrackerType: | |
if self.is_main_process: | |
self.tracker = initialize_trackers(trackers, experiment_name, config, log_dir) | |
else: | |
self.tracker = DummyTracker() | |
def log(self, metrics: Dict[str, Any], step: int) -> None: | |
if self.is_main_process: | |
self.tracker.log(metrics, step) | |
def wait_for_everyone(self): | |
raise NotImplementedError("Method `wait_for_everyone` must be implemented by subclass.") | |
def main_process_first(self): | |
raise NotImplementedError("Method `main_process_first` must be implemented by subclass.") | |
def destroy(self): | |
raise NotImplementedError("Method `destroy` must be implemented by subclass.") | |
def world_size(self): | |
raise NotImplementedError("Method `world_size` must be implemented by subclass.") | |
def rank(self): | |
raise NotImplementedError("Method `rank` must be implemented by subclass.") | |
def local_rank(self): | |
raise NotImplementedError("Method `local_rank` must be implemented by subclass.") | |
def is_main_process(self): | |
raise NotImplementedError("Method `is_main_process` must be implemented by subclass.") | |
def is_local_main_process(self): | |
raise NotImplementedError("Method `is_local_main_process` must be implemented by subclass.") | |
def device(self): | |
raise NotImplementedError("Method `device` must be implemented by subclass.") | |
def pipeline_parallel_enabled(self): | |
raise NotImplementedError("Property `pipeline_parallel_enabled` must be implemented by subclass.") | |
def data_parallel_enabled(self): | |
raise NotImplementedError("Property `data_parallel_enabled` must be implemented by subclass.") | |
def data_replication_enabled(self): | |
raise NotImplementedError("Property `data_replication_enabled` must be implemented by subclass.") | |
def data_sharding_enabled(self): | |
raise NotImplementedError("Property `data_sharding_enabled` must be implemented by subclass.") | |
def context_parallel_enabled(self): | |
raise NotImplementedError("Property `context_parallel_enabled` must be implemented by subclass.") | |
def tensor_parallel_enabled(self): | |
raise NotImplementedError("Property `tensor_parallel_enabled` must be implemented by subclass.") | |
class BaseCheckpointer: | |
r""" | |
Base class that contains properties and methods that should be implemented by different parallel backends. | |
""" | |
def __init__( | |
self, | |
dataloader: torch.utils.data.DataLoader, | |
model_parts: List[torch.nn.Module], | |
optimizers: Any, | |
schedulers: Any, | |
states: Dict[str, Any], | |
checkpointing_steps: int, | |
checkpointing_limit: int, | |
output_dir: str, | |
enable: bool = True, | |
_callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None, | |
_prefix: str = "finetrainers_step", | |
*args, | |
**kwargs, | |
) -> None: | |
raise NotImplementedError("Method `__init__` must be implemented by subclass.") | |
def save(self, step: int, force: bool, *, _device: Optional[torch.device] = None, _is_main_process: bool) -> str: | |
raise NotImplementedError("Method `save` must be implemented by subclass.") | |
def load(self, step: int = -1) -> bool: | |
raise NotImplementedError("Method `load` must be implemented by subclass.") | |