jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Optional
import torch
from finetrainers.trackers import DummyTracker, TrackerType, initialize_trackers
class BaseParallelBackend:
r"""
Base class that contains properties and methods that should be implemented by different parallel backends.
"""
def __init__(self):
self.tracker = None
def enable_determinism(self, seed: int) -> None:
raise NotImplementedError("Method `enable_determinism` must be implemented by subclass.")
def apply_ddp(self, *args, **kwargs) -> torch.nn.Module:
raise NotImplementedError("Method `apply_ddp` must be implemented by subclass.")
def apply_fsdp2(self, *args, **kwargs) -> torch.nn.Module:
raise NotImplementedError("Method `apply_fsdp2` must be implemented by subclass.")
def apply_context_parallel(self, *args, **kwargs) -> torch.nn.Module:
raise NotImplementedError("Method `apply_context_parallel` must be implemented by subclass.")
def prepare_model(self, *args, **kwargs) -> Any:
raise NotImplementedError("Method `prepare_model` must be implemented by subclass.")
def prepare_dataset(self, *args, **kwargs) -> Any:
raise NotImplementedError("Method `prepare_dataset` must be implemented by subclass.")
def prepare_dataloader(self, *args, **kwargs) -> Any:
raise NotImplementedError("Method `prepare_dataloader` must be implemented by subclass.")
def prepare_optimizer(self, *args, **kwargs) -> Any:
raise NotImplementedError("Method `prepare_optimizer` must be implemented by subclass.")
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
raise NotImplementedError("Method `get_mesh` must be implemented by subclass.")
def get_checkpointer(self, *args, **kwargs) -> None:
raise NotImplementedError("Method `get_checkpointer` must be implemented by subclass.")
def initialize_trackers(
self, trackers: List[str], experiment_name: str, config: Dict[str, Any], log_dir: str
) -> TrackerType:
if self.is_main_process:
self.tracker = initialize_trackers(trackers, experiment_name, config, log_dir)
else:
self.tracker = DummyTracker()
def log(self, metrics: Dict[str, Any], step: int) -> None:
if self.is_main_process:
self.tracker.log(metrics, step)
def wait_for_everyone(self):
raise NotImplementedError("Method `wait_for_everyone` must be implemented by subclass.")
@contextmanager
def main_process_first(self):
raise NotImplementedError("Method `main_process_first` must be implemented by subclass.")
def destroy(self):
raise NotImplementedError("Method `destroy` must be implemented by subclass.")
@property
def world_size(self):
raise NotImplementedError("Method `world_size` must be implemented by subclass.")
@property
def rank(self):
raise NotImplementedError("Method `rank` must be implemented by subclass.")
@property
def local_rank(self):
raise NotImplementedError("Method `local_rank` must be implemented by subclass.")
@property
def is_main_process(self):
raise NotImplementedError("Method `is_main_process` must be implemented by subclass.")
@property
def is_local_main_process(self):
raise NotImplementedError("Method `is_local_main_process` must be implemented by subclass.")
@property
def device(self):
raise NotImplementedError("Method `device` must be implemented by subclass.")
@property
def pipeline_parallel_enabled(self):
raise NotImplementedError("Property `pipeline_parallel_enabled` must be implemented by subclass.")
@property
def data_parallel_enabled(self):
raise NotImplementedError("Property `data_parallel_enabled` must be implemented by subclass.")
@property
def data_replication_enabled(self):
raise NotImplementedError("Property `data_replication_enabled` must be implemented by subclass.")
@property
def data_sharding_enabled(self):
raise NotImplementedError("Property `data_sharding_enabled` must be implemented by subclass.")
@property
def context_parallel_enabled(self):
raise NotImplementedError("Property `context_parallel_enabled` must be implemented by subclass.")
@property
def tensor_parallel_enabled(self):
raise NotImplementedError("Property `tensor_parallel_enabled` must be implemented by subclass.")
class BaseCheckpointer:
r"""
Base class that contains properties and methods that should be implemented by different parallel backends.
"""
def __init__(
self,
dataloader: torch.utils.data.DataLoader,
model_parts: List[torch.nn.Module],
optimizers: Any,
schedulers: Any,
states: Dict[str, Any],
checkpointing_steps: int,
checkpointing_limit: int,
output_dir: str,
enable: bool = True,
_callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
_prefix: str = "finetrainers_step",
*args,
**kwargs,
) -> None:
raise NotImplementedError("Method `__init__` must be implemented by subclass.")
def save(self, step: int, force: bool, *, _device: Optional[torch.device] = None, _is_main_process: bool) -> str:
raise NotImplementedError("Method `save` must be implemented by subclass.")
def load(self, step: int = -1) -> bool:
raise NotImplementedError("Method `load` must be implemented by subclass.")