jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
from typing import Any, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
from ..utils.import_utils import is_kornia_available
from .base import ProcessorMixin
if is_kornia_available():
import kornia
class CannyProcessor(ProcessorMixin):
r"""
Processor for obtaining the Canny edge detection of an image.
Args:
output_names (`List[str]`):
The names of the outputs that the processor should return. The first output is the Canny edge detection of
the input image.
"""
def __init__(
self,
output_names: List[str] = None,
input_names: Optional[Dict[str, Any]] = None,
device: Optional[torch.device] = None,
):
super().__init__()
self.output_names = output_names
self.input_names = input_names
self.device = device
assert len(output_names) == 1
def forward(self, input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]]) -> torch.Tensor:
r"""
Obtain the Canny edge detection of the input image.
Args:
input (`torch.Tensor`, `PIL.Image.Image`, or `List[PIL.Image.Image]`):
The input tensor, image or list of images for which the Canny edge detection should be obtained.
If a tensor, must be a 3D (CHW) or 4D (BCHW) or 5D (BTCHW) tensor. The input tensor should have
values in the range [0, 1].
Returns:
torch.Tensor:
The Canny edge detection of the input image. The output has the same shape as the input tensor. If
the input is an image, the output is a 3D tensor. If the input is a list of images, the output is a 5D
tensor. The output tensor has values in the range [0, 1].
"""
if isinstance(input, PIL.Image.Image):
input = kornia.utils.image.image_to_tensor(np.array(input)).unsqueeze(0) / 255.0
input = input.to(self.device)
output = kornia.filters.canny(input)[1].repeat(1, 3, 1, 1).squeeze(0)
elif isinstance(input, list):
input = kornia.utils.image.image_list_to_tensor([np.array(img) for img in input]) / 255.0
output = kornia.filters.canny(input)[1].repeat(1, 3, 1, 1)
else:
ndim = input.ndim
assert ndim in [3, 4, 5]
batch_size = 1 if ndim == 3 else input.size(0)
if ndim == 3:
input = input.unsqueeze(0) # [C, H, W] -> [1, C, H, W]
elif ndim == 5:
input = input.flatten(0, 1) # [B, F, C, H, W] -> [B*F, C, H, W]
output = kornia.filters.canny(input)[1].repeat(1, 3, 1, 1)
output = output[0] if ndim == 3 else output.unflatten(0, (batch_size, -1)) if ndim == 5 else output
# TODO(aryan): think about how one can pass parameters to the underlying function from
# a UI perspective. It's important to think about ProcessorMixin in terms of a Graph-based
# data processing pipeline.
return {self.output_names[0]: output}