Spaces:
Running
Running
import torch | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXDDIMScheduler, CogVideoXTransformer3DModel | |
from transformers import AutoTokenizer, T5EncoderModel | |
from finetrainers.models.cogvideox import CogVideoXModelSpecification | |
class DummyCogVideoXModelSpecification(CogVideoXModelSpecification): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def load_condition_models(self): | |
text_encoder = T5EncoderModel.from_pretrained( | |
"hf-internal-testing/tiny-random-t5", torch_dtype=self.text_encoder_dtype | |
) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
return {"text_encoder": text_encoder, "tokenizer": tokenizer} | |
def load_latent_models(self): | |
torch.manual_seed(0) | |
vae = AutoencoderKLCogVideoX( | |
in_channels=3, | |
out_channels=3, | |
down_block_types=( | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
), | |
up_block_types=( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels=(8, 8, 8, 8), | |
latent_channels=4, | |
layers_per_block=1, | |
norm_num_groups=2, | |
temporal_compression_ratio=4, | |
) | |
# TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. | |
# Doing so overrides things like _keep_in_fp32_modules | |
vae.to(self.vae_dtype) | |
self.vae_config = vae.config | |
return {"vae": vae} | |
def load_diffusion_models(self): | |
torch.manual_seed(0) | |
transformer = CogVideoXTransformer3DModel( | |
num_attention_heads=4, | |
attention_head_dim=16, | |
in_channels=4, | |
out_channels=4, | |
time_embed_dim=2, | |
text_embed_dim=32, | |
num_layers=2, | |
sample_width=24, | |
sample_height=24, | |
sample_frames=9, | |
patch_size=2, | |
temporal_compression_ratio=4, | |
max_text_seq_length=16, | |
use_rotary_positional_embeddings=True, | |
) | |
# TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. | |
# Doing so overrides things like _keep_in_fp32_modules | |
transformer.to(self.transformer_dtype) | |
self.transformer_config = transformer.config | |
scheduler = CogVideoXDDIMScheduler() | |
return {"transformer": transformer, "scheduler": scheduler} | |