import pathlib from typing import Any, Callable, Dict, Iterable, List, Optional, Union import torch from tqdm.auto import tqdm from finetrainers.logging import get_logger from finetrainers.utils import delete_files logger = get_logger() PRECOMPUTED_DATA_DIR = "finetrainers-precomputed-data" def initialize_preprocessor( rank: int, world_size: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]], save_dir: Optional[str] = None, enable_precomputation: bool = False, enable_reuse: bool = False, ) -> Union["InMemoryDistributedDataPreprocessor", "PrecomputedDistributedDataPreprocessor"]: if enable_precomputation: return PrecomputedDistributedDataPreprocessor( rank, world_size, num_items, processor_fn, save_dir, enable_reuse ) return InMemoryDistributedDataPreprocessor(rank, num_items, processor_fn) class DistributedDataProcessorMixin: def consume(self, *args, **kwargs): raise NotImplementedError("DistributedDataProcessorMixin::consume must be implemented by the subclass.") def consume_once(self, *args, **kwargs): raise NotImplementedError("DistributedDataProcessorMixin::consume_once must be implemented by the subclass.") @property def requires_data(self): raise NotImplementedError("DistributedDataProcessorMixin::requires_data must be implemented by the subclass.") class InMemoryDistributedDataPreprocessor(DistributedDataProcessorMixin): def __init__( self, rank: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]] ) -> None: super().__init__() self._rank = rank self._num_items = num_items self._processor_fn = processor_fn self._cached_samples = [] self._buffer = InMemoryDataBuffer(num_items) self._preprocessed_iterator: Union["InMemoryDataIterable", "InMemoryOnceDataIterable"] = None def consume( self, data_type: str, components: Dict[str, Any], data_iterator, generator: Optional[torch.Generator] = None, cache_samples: bool = False, use_cached_samples: bool = False, drop_samples: bool = False, ) -> Iterable[Dict[str, Any]]: if data_type not in self._processor_fn.keys(): raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") if cache_samples: if use_cached_samples: raise ValueError("Cannot cache and use cached samples at the same time.") if drop_samples: raise ValueError("Cannot cache and drop samples at the same time.") for i in range(self._num_items): if use_cached_samples: item = self._cached_samples[i] else: item = next(data_iterator) if cache_samples: self._cached_samples.append(item) item = self._processor_fn[data_type](**item, **components, generator=generator) self._buffer.add(data_type, item) if drop_samples: del self._cached_samples self._cached_samples = [] self._preprocessed_iterator = InMemoryDataIterable(self._rank, data_type, self._buffer) return iter(self._preprocessed_iterator) def consume_once( self, data_type: str, components: Dict[str, Any], data_iterator, generator: Optional[torch.Generator] = None, cache_samples: bool = False, use_cached_samples: bool = False, drop_samples: bool = False, ) -> Iterable[Dict[str, Any]]: if data_type not in self._processor_fn.keys(): raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") if cache_samples: if use_cached_samples: raise ValueError("Cannot cache and use cached samples at the same time.") if drop_samples: raise ValueError("Cannot cache and drop samples at the same time.") for i in range(self._num_items): if use_cached_samples: item = self._cached_samples[i] else: item = next(data_iterator) if cache_samples: self._cached_samples.append(item) item = self._processor_fn[data_type](**item, **components, generator=generator) self._buffer.add(data_type, item) if drop_samples: del self._cached_samples self._cached_samples = [] self._preprocessed_iterator = InMemoryOnceDataIterable(self._rank, data_type, self._buffer) return iter(self._preprocessed_iterator) @property def requires_data(self): if self._preprocessed_iterator is None: return True return self._preprocessed_iterator.requires_data class PrecomputedDistributedDataPreprocessor(DistributedDataProcessorMixin): def __init__( self, rank: int, world_size: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]], save_dir: str, enable_reuse: bool = False, ) -> None: super().__init__() self._rank = rank self._world_size = world_size self._num_items = num_items self._processor_fn = processor_fn self._save_dir = pathlib.Path(save_dir) / PRECOMPUTED_DATA_DIR self._enable_reuse = enable_reuse self._cached_samples = [] self._preprocessed_iterator: Union["PrecomputedDataIterable", "PrecomputedOnceDataIterable"] = None if enable_reuse: if not self._save_dir.exists() or not self._save_dir.is_dir(): raise RuntimeError( f"The directory '{self._save_dir}' does not exist or is not a directory, but is required when enabling reuse of precomputed data." ) logger.info(f"Reusing precomputed data from {self._save_dir}.") else: subdirectories = [] if not self._save_dir.exists() else [f for f in self._save_dir.iterdir() if f.is_dir()] if len(subdirectories) > 0: raise RuntimeError( "The current directory contains subdirectories other than the saved precomputed files. Please remove them or enable precomputation reuse." ) # NOTE: this should be safe since we are adding `PRECOMPUTED_DATA_DIR` to the path, but be careful since # delete_files can seriously mess up your filesystem if used incorrectly. delete_files([self._save_dir]) self._save_dir.mkdir(parents=True, exist_ok=True) logger.info(f"Cleaned up any existing precomputed data in {self._save_dir} and created a fresh directory.") def consume( self, data_type: str, components: Dict[str, Any], data_iterator, generator: Optional[torch.Generator] = None, cache_samples: bool = False, use_cached_samples: bool = False, drop_samples: bool = False, ) -> Iterable[Dict[str, Any]]: if data_type not in self._processor_fn.keys(): raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") if cache_samples: if use_cached_samples: raise ValueError("Cannot cache and use cached samples at the same time.") if drop_samples: raise ValueError("Cannot cache and drop samples at the same time.") if not self._enable_reuse: for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items): if use_cached_samples: item = self._cached_samples[i] else: item = next(data_iterator) if cache_samples: self._cached_samples.append(item) item = self._processor_fn[data_type](**item, **components, generator=generator) index = self._rank * self._num_items + i _save_item(item, index, self._save_dir, data_type) if drop_samples: del self._cached_samples self._cached_samples = [] if self._enable_reuse: data_iterator = PrecomputedOnceDataIterable(self._rank, self._world_size, self._save_dir, data_type) else: data_iterator = PrecomputedDataIterable(self._rank, self._world_size, self._save_dir, data_type) self._preprocessed_iterator = data_iterator return iter(data_iterator) def consume_once( self, data_type: str, components: Dict[str, Any], data_iterator, generator: Optional[torch.Generator] = None, cache_samples: bool = False, use_cached_samples: bool = False, drop_samples: bool = False, ) -> Iterable[Dict[str, Any]]: if data_type not in self._processor_fn.keys(): raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}") if cache_samples: if use_cached_samples: raise ValueError("Cannot cache and use cached samples at the same time.") if drop_samples: raise ValueError("Cannot cache and drop samples at the same time.") if not self._enable_reuse: for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items): if use_cached_samples: item = self._cached_samples[i] else: item = next(data_iterator) if cache_samples: self._cached_samples.append(item) item = self._processor_fn[data_type](**item, **components, generator=generator) index = self._rank * self._num_items + i _save_item(item, index, self._save_dir, data_type) if drop_samples: del self._cached_samples self._cached_samples = [] self._preprocessed_iterator = PrecomputedOnceDataIterable( self._rank, self._world_size, self._save_dir, data_type ) return iter(self._preprocessed_iterator) @property def requires_data(self): if self._preprocessed_iterator is None: return True return self._preprocessed_iterator.requires_data class InMemoryDataIterable: """ An iterator that loads data items from an in-memory buffer. Once all the data is consumed, `requires_data` is set to True, indicating that the more data is required and the preprocessor's consume method should be called again. """ def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None: self._rank = rank self._data_type = data_type self._buffer = buffer self._requires_data = False def __iter__(self) -> Iterable[Dict[str, Any]]: while (length := self._buffer.get_length(self._data_type)) > 0: if length <= 1: self._requires_data = True yield self._buffer.get(self._data_type) def __len__(self) -> int: return self._buffer.get_length(self._data_type) @property def requires_data(self): return self._requires_data class InMemoryOnceDataIterable: """ An iterator that loads data items from an in-memory buffer. This iterator will never set `requires_data` to True, as it is assumed that all the data was configured to be preprocessed by the user. The data will indefinitely be cycled from the buffer. """ def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None: self._rank = rank self._data_type = data_type self._buffer = buffer self._requires_data = False def __iter__(self) -> Iterable[Dict[str, Any]]: assert len(self) > 0, "No data available in the buffer." while True: item = self._buffer.get(self._data_type) yield item self._buffer.add(self._data_type, item) def __len__(self) -> int: return self._buffer.get_length(self._data_type) @property def requires_data(self): return self._requires_data class PrecomputedDataIterable: """ An iterator that loads preconfigured number of data items from disk. Once all the data is loaded, `requires_data` is set to True, indicating that the more data is required and the preprocessor's consume method should be called again. """ def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None: self._rank = rank self._world_size = world_size self._save_dir = pathlib.Path(save_dir) self._data_type = data_type self._requires_data = False self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt"))) def __iter__(self) -> Iterable[Dict[str, Any]]: map_location = torch.device(self._rank) for i in range(self._num_items): if i == self._num_items - 1: self._requires_data = True index = self._rank * self._num_items + i yield _load_item(index, self._save_dir, self._data_type, map_location) def __len__(self) -> int: return self._num_items @property def requires_data(self): return self._requires_data class PrecomputedOnceDataIterable: """ An infinite iterator that loads preprocessed data from disk. Once initialized, this iterator will never set `requires_data` to True, as it is assumed that all the data was configured to be preprocessed by the user. """ def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None: self._rank = rank self._world_size = world_size self._save_dir = pathlib.Path(save_dir) self._data_type = data_type self._requires_data = False self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt"))) if self._num_items <= self._rank: raise ValueError( f"Precomputed data directory is empty or does not contain enough items (required {self._rank + 1}, found {self._num_items})." ) self._num_items_per_rank = max(1, self._num_items // world_size) def __iter__(self) -> Iterable[Dict[str, Any]]: map_location = torch.device(self._rank) i = 0 while True: index = self._rank * self._num_items_per_rank + i yield _load_item(index, self._save_dir, self._data_type, map_location) i = (i + 1) % self._num_items_per_rank def __len__(self) -> int: return self._num_items_per_rank @property def requires_data(self): return self._requires_data class InMemoryDataBuffer: def __init__(self, max_limit: int = -1) -> None: self.max_limit = max_limit self.buffer: Dict[str, List[str]] = {} def add(self, data_type: str, item: Dict[str, Any]) -> None: if data_type not in self.buffer: self.buffer[data_type] = [] if self.max_limit != -1 and len(self.buffer[data_type]) >= self.max_limit: logger.log_freq( "WARN", "IN_MEMORY_DATA_BUFFER_FULL", "Buffer is full. Dropping the oldest item. This message will be logged every 64th time this happens.", 64, ) self.buffer[data_type].pop(0) self.buffer[data_type].append(item) def get(self, data_type: str) -> Dict[str, Any]: return self.buffer[data_type].pop(0) def get_length(self, data_type: str) -> int: return len(self.buffer[data_type]) def _save_item(item: Dict[str, Any], index: int, directory: pathlib.Path, data_type: str) -> None: filename = directory / f"{data_type}-{index}.pt" torch.save(item, filename.as_posix()) def _load_item(index: int, directory: pathlib.Path, data_type: str, map_location=None) -> Dict[str, Any]: filename = directory / f"{data_type}-{index}.pt" return torch.load(filename.as_posix(), map_location=map_location, weights_only=True)