from typing import TYPE_CHECKING import torch from .dependencies.diffusers.peft import load_lora_weights if TYPE_CHECKING: from finetrainers.args import BaseArgsType from finetrainers.parallel import ParallelBackendType def perform_patches_for_training(args: "BaseArgsType", parallel_backend: "ParallelBackendType") -> None: # To avoid circular imports from finetrainers.config import ModelType, TrainingType from .dependencies.diffusers import patch # Modeling patches patch_scaled_dot_product_attention() patch.patch_diffusers_rms_norm_forward() # LTX Video patches if args.model_name == ModelType.LTX_VIDEO: from .models.ltx_video import patch patch.patch_transformer_forward() if parallel_backend.tensor_parallel_enabled: patch.patch_apply_rotary_emb_for_tp_compatibility() # Wan patches if args.model_name == ModelType.WAN and "transformer" in args.layerwise_upcasting_modules: from .models.wan import patch patch.patch_time_text_image_embedding_forward() # LoRA patches if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0: from .dependencies.peft import patch patch.patch_peft_move_adapter_to_device_of_base_layer() def perform_patches_for_inference(args: "BaseArgsType", parallel_backend: "ParallelBackendType") -> None: # To avoid circular imports from .dependencies.diffusers import patch # Modeling patches patch_scaled_dot_product_attention() patch.patch_diffusers_rms_norm_forward() def patch_scaled_dot_product_attention(): from finetrainers.models.attention_dispatch import attention_dispatch torch.nn.functional.scaled_dot_product_attention = attention_dispatch