import torch from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanTransformer3DModel from transformers import AutoTokenizer, T5EncoderModel from finetrainers.models.wan import WanModelSpecification class DummyWanModelSpecification(WanModelSpecification): def __init__(self, **kwargs): super().__init__(**kwargs) def load_condition_models(self): text_encoder = T5EncoderModel.from_pretrained( "hf-internal-testing/tiny-random-t5", torch_dtype=self.text_encoder_dtype ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") return {"text_encoder": text_encoder, "tokenizer": tokenizer} def load_latent_models(self): torch.manual_seed(0) vae = AutoencoderKLWan( base_dim=3, z_dim=16, dim_mult=[1, 1, 1, 1], num_res_blocks=1, temperal_downsample=[False, True, True], ) # TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. # Doing so overrides things like _keep_in_fp32_modules vae.to(self.vae_dtype) self.vae_config = vae.config return {"vae": vae} def load_diffusion_models(self): torch.manual_seed(0) transformer = WanTransformer3DModel( patch_size=(1, 2, 2), num_attention_heads=2, attention_head_dim=12, in_channels=16, out_channels=16, text_dim=32, freq_dim=256, ffn_dim=32, num_layers=2, cross_attn_norm=True, qk_norm="rms_norm_across_heads", rope_max_seq_len=32, ) # TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. # Doing so overrides things like _keep_in_fp32_modules transformer.to(self.transformer_dtype) scheduler = FlowMatchEulerDiscreteScheduler() return {"transformer": transformer, "scheduler": scheduler}