File size: 15,590 Bytes
023c8c3
 
 
bceaa96
023c8c3
 
 
bceaa96
bcf8146
 
 
 
 
bceaa96
bcf8146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66cfa3
 
 
 
 
 
bcf8146
 
 
 
 
023c8c3
ca69418
 
74087f2
ca69418
 
 
 
74087f2
ca69418
74087f2
 
 
ca69418
 
 
74087f2
ca69418
74087f2
 
 
 
ca69418
 
 
 
74087f2
ca69418
 
 
 
 
 
 
74087f2
 
 
 
 
ca69418
 
74087f2
ca69418
 
 
 
74087f2
ca69418
74087f2
 
 
 
 
 
 
 
ca69418
74087f2
 
 
 
 
 
 
 
ca69418
 
 
74087f2
ca69418
 
 
 
 
74087f2
 
 
 
 
 
 
 
 
 
 
 
 
 
ca69418
52b0587
 
 
74087f2
52b0587
 
 
 
ca69418
52b0587
ca69418
 
52b0587
 
74087f2
52b0587
 
 
74087f2
 
 
 
 
52b0587
74087f2
 
 
 
 
 
 
 
 
 
 
 
 
52b0587
 
ca69418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf8146
ca69418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66cfa3
bcf8146
023c8c3
bcf8146
023c8c3
 
 
 
 
 
 
 
 
 
 
 
74dee69
023c8c3
 
426ec64
023c8c3
 
 
 
 
 
 
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
 
 
74087f2
 
023c8c3
 
 
 
74dee69
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
 
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
bceaa96
 
 
bcf8146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023c8c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh

class GPUSatelliteModelGenerator:
    def __init__(self, building_height=0.05):
        self.building_height = building_height
        
        # Move color arrays to GPU using cupy
        self.shadow_colors = cp.array([
            [31, 42, 76],
            [58, 64, 92],
            [15, 27, 56],
            [21, 22, 50],
            [76, 81, 99]
        ])
        
        self.road_colors = cp.array([
            [187, 182, 175],
            [138, 138, 138], 
            [142, 142, 129],
            [202, 199, 189]
        ])
        
        self.water_colors = cp.array([
            [167, 225, 217],
            [67, 101, 97],
            [53, 83, 84],
            [47, 94, 100],
            [73, 131, 135]
        ])
        
        # Convert reference colors to HSV on GPU
        self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
            self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        self.road_colors_hsv = cp.asarray(cv2.cvtColor(
            self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        self.water_colors_hsv = cp.asarray(cv2.cvtColor(
            self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        # Normalize HSV values on GPU
        for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
            colors_hsv[:, 0] = colors_hsv[:, 0] * 2
            colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
        
        # Color tolerances
        self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
        self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
        self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
        
        # Output colors (BGR for OpenCV)
        self.colors = {
            'black': cp.array([0, 0, 0]),     # Shadows
            'blue': cp.array([255, 0, 0]),    # Water
            'green': cp.array([0, 255, 0]),   # Vegetation
            'gray': cp.array([128, 128, 128]), # Roads
            'brown': cp.array([0, 140, 255]),  # Terrain
            'white': cp.array([255, 255, 255]) # Buildings
        }
        
        self.min_area_for_clustering = 1000
        self.residential_height_factor = 0.6
        self.isolation_threshold = 0.6

    @staticmethod
    def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
        """HSV color distance calculation"""
        pixel_h = pixel_hsv[0] * 2
        pixel_s = pixel_hsv[1] / 255
        pixel_v = pixel_hsv[2] / 255
        
        # Calculate circular hue difference
        hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
                             360 - cp.abs(pixel_h - reference_hsv[0]))
        
        # Calculate saturation and value differences with weighted importance
        sat_diff = cp.abs(pixel_s - reference_hsv[1])
        val_diff = cp.abs(pixel_v - reference_hsv[2])
        
        # Combined distance check with adjusted weights
        return cp.logical_and(
            cp.logical_and(
                hue_diff <= tolerance['hue'],
                sat_diff <= tolerance['sat']
            ),
            val_diff <= tolerance['val']
        )

    def segment_image_gpu(self, img):
        """GPU-accelerated image segmentation with improved road and shadow detection"""
        # Transfer image to GPU
        gpu_img = cp.asarray(img)
        gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
        
        height, width = img.shape[:2]
        output = cp.zeros_like(gpu_img)
        
        # Create a sliding window view for neighborhood analysis
        pad = 2  # Equivalent to window_size=5 in segment.py
        gpu_hsv_pad = cp.pad(gpu_hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
        
        # Prepare flattened HSV data
        hsv_pixels = gpu_hsv.reshape(-1, 3)
        
        # Initialize masks
        shadow_mask = cp.zeros((height * width,), dtype=bool)
        road_mask = cp.zeros((height * width,), dtype=bool)
        water_mask = cp.zeros((height * width,), dtype=bool)
        
        # Improved color matching with adjusted tolerances
        for ref_hsv in self.shadow_colors_hsv:
            # Lower the threshold for shadows to catch more subtle variations
            temp_tolerance = {
                'hue': self.shadow_tolerance['hue'] * 1.2,  # Slightly increased tolerance
                'sat': self.shadow_tolerance['sat'] * 1.1,
                'val': self.shadow_tolerance['val'] * 1.2
            }
            shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
        
        for ref_hsv in self.road_colors_hsv:
            # Adjusted road detection with focus on value component
            temp_tolerance = {
                'hue': self.road_tolerance['hue'] * 1.3,  # Increased hue tolerance
                'sat': self.road_tolerance['sat'] * 1.2,  # Increased saturation tolerance
                'val': self.road_tolerance['val']  # Keep original value tolerance
            }
            road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
        
        for ref_hsv in self.water_colors_hsv:
            water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
        
        # Normalize HSV values for vegetation and terrain detection
        h, s, v = hsv_pixels.T
        h = h * 2  # Convert to 0-360 range
        s = s / 255
        v = v / 255
        
        # Enhanced vegetation detection
        vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
        
        # Enhanced terrain detection
        terrain_mask = ((h >= 10) & (h <= 30) & (s >= 0.15)) | \
                      ((h >= 25) & (h <= 40) & (s >= 0.1) & (v <= 0.8))  # Added brown-gray detection
        
        # Apply brightness-based corrections for roads
        gray_mask = (s <= 0.2) & (v >= 0.4) & (v <= 0.85)  # Detect grayish areas
        road_mask |= gray_mask & ~(shadow_mask | water_mask | vegetation_mask | terrain_mask)
        
        # Enhanced shadow detection using value component
        dark_mask = (v <= 0.3)  # Detect very dark areas
        shadow_mask |= dark_mask & ~(water_mask | road_mask)
        
        # Building mask (everything that's not another category)
        building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask)
        
        # Apply masks to create output
        output_flat = output.reshape(-1, 3)
        output_flat[shadow_mask] = self.colors['black']
        output_flat[water_mask] = self.colors['blue']
        output_flat[road_mask] = self.colors['gray']
        output_flat[vegetation_mask] = self.colors['green']
        output_flat[terrain_mask] = self.colors['brown']
        output_flat[building_mask] = self.colors['white']
        
        segmented = output.reshape(height, width, 3)
        
        # Enhanced isolated pixel cleanup using morphological operations
        kernel = cp.ones((3, 3), dtype=bool)
        kernel[1, 1] = False
        
        # Two-pass cleanup for better results
        for _ in range(2):
            for color_name, color_value in self.colors.items():
                if cp.array_equal(color_value, self.colors['white']):
                    continue
                
                # Create and dilate mask for current color
                color_mask = cp.all(segmented == color_value, axis=2)
                dilated = binary_dilation(color_mask, structure=kernel)
                
                # Find isolated building pixels
                building_pixels = cp.all(segmented == self.colors['white'], axis=2)
                neighbor_count = binary_dilation(color_mask, structure=kernel).astype(int)
                
                # More aggressive cleanup for truly isolated pixels
                surrounded = (neighbor_count >= 5) & building_pixels  # At least 5 neighbors of same color
                
                # Update isolated pixels
                segmented[surrounded] = color_value
        
        return segmented
        
    def estimate_heights_gpu(self, img, segmented):
        """GPU-accelerated height estimation"""
        gpu_segmented = cp.asarray(segmented)
        buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
        shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
        
        # Connected components labeling on GPU
        labeled_array, num_features = cp_label(buildings_mask)
        
        # Calculate areas using GPU
        areas = cp.bincount(labeled_array.ravel())[1:]  # Skip background
        max_area = cp.max(areas) if len(areas) > 0 else 1
        
        height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
        
        # Process each building
        for label in range(1, num_features + 1):
            building_mask = (labeled_array == label)
            if not cp.any(building_mask):
                continue
            
            area = areas[label-1]
            size_factor = 0.3 + 0.7 * (area / max_area)
            
            # Calculate shadow influence
            dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
            shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
            shadow_factor = 0.2 + 0.8 * shadow_ratio
            
            # Height calculation based on size and shadows
            final_height = size_factor * shadow_factor
            height_map[building_mask] = final_height
        
        return height_map.get() * 0.25

    def generate_mesh_gpu(self, height_map, texture_img):
        """Generate 3D mesh using GPU-accelerated calculations"""
        height_map_gpu = cp.asarray(height_map)
        height, width = height_map.shape
        
        # Generate vertex positions on GPU
        x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
        vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
        vertices = vertices.reshape(-1, 3)
        
        # Normalize coordinates
        scale = max(width, height)
        vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
        vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
        vertices[:, 1] = vertices[:, 1] * 2 - 1
        
        # Generate faces
        i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
        v0 = (i * width + j).flatten()
        v1 = v0 + 1
        v2 = ((i + 1) * width + j).flatten()
        v3 = v2 + 1
        
        faces = cp.vstack((
            cp.column_stack((v0, v2, v1)),
            cp.column_stack((v1, v2, v3))
        ))
        
        # Generate UV coordinates
        uvs = cp.zeros((vertices.shape[0], 2))
        uvs[:, 0] = x.flatten() / (width - 1)
        uvs[:, 1] = 1 - (z.flatten() / (height - 1))
        
        # Convert to CPU for mesh creation
        vertices_cpu = vertices.get()
        faces_cpu = faces.get()
        uvs_cpu = uvs.get()
        
        # Create mesh
        if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
            texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
        elif len(texture_img.shape) == 3:
            texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
        
        mesh = trimesh.Trimesh(
            vertices=vertices_cpu,
            faces=faces_cpu,
            visual=trimesh.visual.TextureVisuals(
                uv=uvs_cpu,
                image=Image.fromarray(texture_img)
            )
        )
        
        return mesh
        
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
    """Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
    try:
        # Set dimensions and device
        width = height = 1024
        
        # Generate random seed
        seed = np.random.randint(0, np.iinfo(np.int32).max)
        
        # Set random seeds
        torch.manual_seed(seed)
        np.random.seed(seed)
        
        # Generate satellite image using FLUX
        generator = torch.Generator(device=device).manual_seed(seed)
        generated_image = flux_pipe(
            prompt=f"satellite view in the style of TOK, {prompt}",
            width=width,
            height=height,
            num_inference_steps=25,
            generator=generator,
            guidance_scale=7.5
        ).images[0]
        
        # Convert PIL Image to OpenCV format
        cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
        
        # Initialize GPU-accelerated generator
        generator = GPUSatelliteModelGenerator(building_height=0.09)
        
        # Process image using GPU
        print("Segmenting image using GPU...")
        segmented_img = generator.segment_image_gpu(cv_image)
        
        print("Estimating heights using GPU...")
        height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
        
        # Generate mesh using GPU-accelerated calculations
        print("Generating mesh using GPU...")
        mesh = generator.generate_mesh_gpu(height_map, cv_image)
        
        # Export to GLB
        temp_dir = tempfile.mkdtemp()
        output_path = os.path.join(temp_dir, 'output.glb')
        mesh.export(output_path)
        
        # Save segmented image to a temporary file
        segmented_path = os.path.join(temp_dir, 'segmented.png')
        cv2.imwrite(segmented_path, segmented_img.get())
        
        return output_path, segmented_path
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, None

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Text to Map")
    gr.Markdown("Generate a 3D map from text!")
    
    with gr.Row():
        prompt_input = gr.Text(
            label="Enter your prompt",
            placeholder="classic american town"
        )
    
    with gr.Row():
        generate_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row():
        with gr.Column():
            model_output = gr.Model3D(
                label="Generated 3D Map",
                clear_color=[0.0, 0.0, 0.0, 0.0],
            )
        with gr.Column():
            segmented_output = gr.Image(
                label="Segmented Map",
                type="filepath"
            )
    
    # Event handler
    generate_btn.click(
        fn=generate_and_process_map,
        inputs=[prompt_input],
        outputs=[model_output, segmented_output],
        api_name="generate"
    )

if __name__ == "__main__":
    # Initialize FLUX pipeline
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.bfloat16
    
    repo_id = "black-forest-labs/FLUX.1-dev"
    adapter_id = "jbilcke-hf/flux-satellite"
    
    flux_pipe = DiffusionPipeline.from_pretrained(
        repo_id,
        torch_dtype=torch.bfloat16
    )
    flux_pipe.load_lora_weights(adapter_id)
    flux_pipe = flux_pipe.to(device)
    
    # Launch Gradio app
    demo.queue().launch()