Spaces:
Paused
Paused
File size: 15,590 Bytes
023c8c3 bceaa96 023c8c3 bceaa96 bcf8146 bceaa96 bcf8146 a66cfa3 bcf8146 023c8c3 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 74087f2 ca69418 52b0587 74087f2 52b0587 ca69418 52b0587 ca69418 52b0587 74087f2 52b0587 74087f2 52b0587 74087f2 52b0587 ca69418 bcf8146 ca69418 a66cfa3 bcf8146 023c8c3 bcf8146 023c8c3 74dee69 023c8c3 426ec64 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 a66cfa3 023c8c3 a66cfa3 023c8c3 74087f2 023c8c3 74dee69 023c8c3 a66cfa3 023c8c3 a66cfa3 023c8c3 bceaa96 bcf8146 023c8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Move color arrays to GPU using cupy
self.shadow_colors = cp.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = cp.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = cp.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Convert reference colors to HSV on GPU
self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.road_colors_hsv = cp.asarray(cv2.cvtColor(
self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.water_colors_hsv = cp.asarray(cv2.cvtColor(
self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize HSV values on GPU
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Output colors (BGR for OpenCV)
self.colors = {
'black': cp.array([0, 0, 0]), # Shadows
'blue': cp.array([255, 0, 0]), # Water
'green': cp.array([0, 255, 0]), # Vegetation
'gray': cp.array([128, 128, 128]), # Roads
'brown': cp.array([0, 140, 255]), # Terrain
'white': cp.array([255, 255, 255]) # Buildings
}
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
@staticmethod
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
"""HSV color distance calculation"""
pixel_h = pixel_hsv[0] * 2
pixel_s = pixel_hsv[1] / 255
pixel_v = pixel_hsv[2] / 255
# Calculate circular hue difference
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
360 - cp.abs(pixel_h - reference_hsv[0]))
# Calculate saturation and value differences with weighted importance
sat_diff = cp.abs(pixel_s - reference_hsv[1])
val_diff = cp.abs(pixel_v - reference_hsv[2])
# Combined distance check with adjusted weights
return cp.logical_and(
cp.logical_and(
hue_diff <= tolerance['hue'],
sat_diff <= tolerance['sat']
),
val_diff <= tolerance['val']
)
def segment_image_gpu(self, img):
"""GPU-accelerated image segmentation with improved road and shadow detection"""
# Transfer image to GPU
gpu_img = cp.asarray(img)
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img)
# Create a sliding window view for neighborhood analysis
pad = 2 # Equivalent to window_size=5 in segment.py
gpu_hsv_pad = cp.pad(gpu_hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
# Prepare flattened HSV data
hsv_pixels = gpu_hsv.reshape(-1, 3)
# Initialize masks
shadow_mask = cp.zeros((height * width,), dtype=bool)
road_mask = cp.zeros((height * width,), dtype=bool)
water_mask = cp.zeros((height * width,), dtype=bool)
# Improved color matching with adjusted tolerances
for ref_hsv in self.shadow_colors_hsv:
# Lower the threshold for shadows to catch more subtle variations
temp_tolerance = {
'hue': self.shadow_tolerance['hue'] * 1.2, # Slightly increased tolerance
'sat': self.shadow_tolerance['sat'] * 1.1,
'val': self.shadow_tolerance['val'] * 1.2
}
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.road_colors_hsv:
# Adjusted road detection with focus on value component
temp_tolerance = {
'hue': self.road_tolerance['hue'] * 1.3, # Increased hue tolerance
'sat': self.road_tolerance['sat'] * 1.2, # Increased saturation tolerance
'val': self.road_tolerance['val'] # Keep original value tolerance
}
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.water_colors_hsv:
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
# Normalize HSV values for vegetation and terrain detection
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
# Enhanced vegetation detection
vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
# Enhanced terrain detection
terrain_mask = ((h >= 10) & (h <= 30) & (s >= 0.15)) | \
((h >= 25) & (h <= 40) & (s >= 0.1) & (v <= 0.8)) # Added brown-gray detection
# Apply brightness-based corrections for roads
gray_mask = (s <= 0.2) & (v >= 0.4) & (v <= 0.85) # Detect grayish areas
road_mask |= gray_mask & ~(shadow_mask | water_mask | vegetation_mask | terrain_mask)
# Enhanced shadow detection using value component
dark_mask = (v <= 0.3) # Detect very dark areas
shadow_mask |= dark_mask & ~(water_mask | road_mask)
# Building mask (everything that's not another category)
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask)
# Apply masks to create output
output_flat = output.reshape(-1, 3)
output_flat[shadow_mask] = self.colors['black']
output_flat[water_mask] = self.colors['blue']
output_flat[road_mask] = self.colors['gray']
output_flat[vegetation_mask] = self.colors['green']
output_flat[terrain_mask] = self.colors['brown']
output_flat[building_mask] = self.colors['white']
segmented = output.reshape(height, width, 3)
# Enhanced isolated pixel cleanup using morphological operations
kernel = cp.ones((3, 3), dtype=bool)
kernel[1, 1] = False
# Two-pass cleanup for better results
for _ in range(2):
for color_name, color_value in self.colors.items():
if cp.array_equal(color_value, self.colors['white']):
continue
# Create and dilate mask for current color
color_mask = cp.all(segmented == color_value, axis=2)
dilated = binary_dilation(color_mask, structure=kernel)
# Find isolated building pixels
building_pixels = cp.all(segmented == self.colors['white'], axis=2)
neighbor_count = binary_dilation(color_mask, structure=kernel).astype(int)
# More aggressive cleanup for truly isolated pixels
surrounded = (neighbor_count >= 5) & building_pixels # At least 5 neighbors of same color
# Update isolated pixels
segmented[surrounded] = color_value
return segmented
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:] # Skip background
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
# Height calculation based on size and shadows
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate 3D mesh using GPU-accelerated calculations"""
height_map_gpu = cp.asarray(height_map)
height, width = height_map.shape
# Generate vertex positions on GPU
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate faces
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
# Generate UV coordinates
uvs = cp.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
# Convert to CPU for mesh creation
vertices_cpu = vertices.get()
faces_cpu = faces.get()
uvs_cpu = uvs.get()
# Create mesh
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
elif len(texture_img.shape) == 3:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices_cpu,
faces=faces_cpu,
visual=trimesh.visual.TextureVisuals(
uv=uvs_cpu,
image=Image.fromarray(texture_img)
)
)
return mesh
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=f"satellite view in the style of TOK, {prompt}",
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
# Save segmented image to a temporary file
segmented_path = os.path.join(temp_dir, 'segmented.png')
cv2.imwrite(segmented_path, segmented_img.get())
return output_path, segmented_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Map")
gr.Markdown("Generate a 3D map from text!")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="classic american town"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
with gr.Column():
segmented_output = gr.Image(
label="Segmented Map",
type="filepath"
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output, segmented_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch() |