Spaces:
Paused
Paused
Update app_legacy.py
Browse files- app_legacy.py +105 -1
app_legacy.py
CHANGED
@@ -1 +1,105 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
+
from diffusers import DiffusionPipeline
|
9 |
+
from script import SatelliteModelGenerator
|
10 |
+
|
11 |
+
# Initialize models and device
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
dtype = torch.bfloat16
|
14 |
+
|
15 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
16 |
+
adapter_id = "jbilcke-hf/flux-satellite"
|
17 |
+
|
18 |
+
flux_pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
19 |
+
flux_pipe.load_lora_weights(adapter_id)
|
20 |
+
flux_pipe = flux_pipe.to(device)
|
21 |
+
|
22 |
+
def generate_and_process_map(prompt: str) -> str | None:
|
23 |
+
"""Generate satellite image from prompt and convert to 3D model."""
|
24 |
+
try:
|
25 |
+
# Set dimensions
|
26 |
+
width = height = 1024
|
27 |
+
|
28 |
+
# Generate random seed
|
29 |
+
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
30 |
+
|
31 |
+
# Set random seeds
|
32 |
+
torch.manual_seed(seed)
|
33 |
+
np.random.seed(seed)
|
34 |
+
|
35 |
+
# Generate satellite image using FLUX
|
36 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
37 |
+
generated_image = flux_pipe(
|
38 |
+
prompt=prompt,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
num_inference_steps=30,
|
42 |
+
generator=generator,
|
43 |
+
guidance_scale=7.5
|
44 |
+
).images[0]
|
45 |
+
|
46 |
+
# Convert PIL Image to OpenCV format
|
47 |
+
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
|
48 |
+
|
49 |
+
# Initialize SatelliteModelGenerator
|
50 |
+
generator = SatelliteModelGenerator(building_height=0.09)
|
51 |
+
|
52 |
+
# Process image
|
53 |
+
print("Segmenting image...")
|
54 |
+
segmented_img = generator.segment_image(cv_image, window_size=5)
|
55 |
+
|
56 |
+
print("Estimating heights...")
|
57 |
+
height_map = generator.estimate_heights(cv_image, segmented_img)
|
58 |
+
|
59 |
+
# Generate mesh
|
60 |
+
print("Generating mesh...")
|
61 |
+
mesh = generator.generate_mesh(height_map, cv_image, add_walls=True)
|
62 |
+
|
63 |
+
# Export to GLB
|
64 |
+
temp_dir = tempfile.mkdtemp()
|
65 |
+
output_path = os.path.join(temp_dir, 'output.glb')
|
66 |
+
mesh.export(output_path)
|
67 |
+
|
68 |
+
return output_path
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error during generation: {str(e)}")
|
72 |
+
import traceback
|
73 |
+
traceback.print_exc()
|
74 |
+
return None
|
75 |
+
|
76 |
+
# Create Gradio interface
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
gr.Markdown("# Text to Map")
|
79 |
+
gr.Markdown("Generate 3D maps from text descriptions using FLUX and mesh generation.")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
prompt_input = gr.Text(
|
83 |
+
label="Enter your prompt",
|
84 |
+
placeholder="eg. satellite view of downtown Manhattan"
|
85 |
+
)
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
model_output = gr.Model3D(
|
92 |
+
label="Generated 3D Map",
|
93 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
94 |
+
)
|
95 |
+
|
96 |
+
# Event handler
|
97 |
+
generate_btn.click(
|
98 |
+
fn=generate_and_process_map,
|
99 |
+
inputs=[prompt_input],
|
100 |
+
outputs=[model_output],
|
101 |
+
api_name="generate"
|
102 |
+
)
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
demo.queue().launch()
|