Spaces:
Runtime error
Runtime error
File size: 91,628 Bytes
a2d6915 2f0420a a2d6915 2f0420a a2d6915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "MpkYHwCqk7W-"
},
"source": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xBSdkbmGN2K-"
},
"source": [
"### Copyright notice"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_UbO9uhtBSX5"
},
"source": [
"> <p><small><small>Copyright 2025 DeepMind Technologies Limited.</small></p>\n",
"> <p><small><small>Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at <a href=\"http://www.apache.org/licenses/LICENSE-2.0\">http://www.apache.org/licenses/LICENSE-2.0</a>.</small></small></p>\n",
"> <p><small><small>Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.</small></small></p>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dNIJkb_FM2Ux"
},
"source": [
"# Locomotion in The Playground! <a href=\"https://colab.research.google.com/github/google-deepmind/mujoco_playground/blob/main/learning/notebooks/locomotion.ipynb\" target=\"_blank\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" width=\"140\" align=\"center\"/></a>\n",
"\n",
"In this notebook, we'll walk through a few locomotion environments available in MuJoCo Playground.\n",
"\n",
"You can totally run this notebook on Hugging Face!\n",
"\n",
"**I recommend to use the <a href=\"https://huggingface.co/spaces/jbilcke-hf/train-robots-with-mujoco\" target=\"_blank\">following Space template</a> with a Nvidia GPU.**\n",
"\n",
"It will make things easier for you as most modules are already pre-installed (so installation steps will be super fast 😎)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"id": "Xqo7pyX-n72M"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting jax[cuda12]\n",
" Downloading jax-0.6.2-py3-none-any.whl.metadata (13 kB)\n",
"Collecting jaxlib<=0.6.2,>=0.6.2 (from jax[cuda12])\n",
" Downloading jaxlib-0.6.2-cp313-cp313-manylinux2014_x86_64.whl.metadata (1.3 kB)\n",
"Collecting ml_dtypes>=0.5.0 (from jax[cuda12])\n",
" Downloading ml_dtypes-0.5.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB)\n",
"Collecting numpy>=1.26 (from jax[cuda12])\n",
" Downloading numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl.metadata (62 kB)\n",
"Collecting opt_einsum (from jax[cuda12])\n",
" Downloading opt_einsum-3.4.0-py3-none-any.whl.metadata (6.3 kB)\n",
"Collecting scipy>=1.12 (from jax[cuda12])\n",
" Downloading scipy-1.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (61 kB)\n",
"Collecting jax-cuda12-plugin<=0.6.2,>=0.6.2 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading jax_cuda12_plugin-0.6.2-cp313-cp313-manylinux2014_x86_64.whl.metadata (1.7 kB)\n",
"Collecting jax-cuda12-pjrt==0.6.2 (from jax-cuda12-plugin<=0.6.2,>=0.6.2->jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading jax_cuda12_pjrt-0.6.2-py3-none-manylinux2014_x86_64.whl.metadata (579 bytes)\n",
"Collecting nvidia-cublas-cu12>=12.1.3.1 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cublas_cu12-12.9.1.4-py3-none-manylinux_2_27_x86_64.whl.metadata (1.7 kB)\n",
"Collecting nvidia-cuda-cupti-cu12>=12.1.105 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cuda_cupti_cu12-12.9.79-py3-none-manylinux_2_25_x86_64.whl.metadata (1.8 kB)\n",
"Collecting nvidia-cuda-nvcc-cu12>=12.6.85 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cuda_nvcc_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl.metadata (1.7 kB)\n",
"Collecting nvidia-cuda-runtime-cu12>=12.1.105 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cuda_runtime_cu12-12.9.79-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.7 kB)\n",
"Collecting nvidia-cudnn-cu12<10.0,>=9.8 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl.metadata (1.8 kB)\n",
"Collecting nvidia-cufft-cu12>=11.0.2.54 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cufft_cu12-11.4.1.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.8 kB)\n",
"Collecting nvidia-cusolver-cu12>=11.4.5.107 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cusolver_cu12-11.7.5.82-py3-none-manylinux_2_27_x86_64.whl.metadata (1.9 kB)\n",
"Collecting nvidia-cusparse-cu12>=12.1.0.106 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cusparse_cu12-12.5.10.65-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.8 kB)\n",
"Collecting nvidia-nccl-cu12>=2.18.1 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.0 kB)\n",
"Collecting nvidia-nvjitlink-cu12>=12.1.105 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_nvjitlink_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl.metadata (1.7 kB)\n",
"Collecting nvidia-cuda-nvrtc-cu12>=12.1.55 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_cuda_nvrtc_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl.metadata (1.7 kB)\n",
"Collecting nvidia-nvshmem-cu12>=3.2.5 (from jax-cuda12-plugin[with-cuda]<=0.6.2,>=0.6.2; extra == \"cuda12\"->jax[cuda12])\n",
" Downloading nvidia_nvshmem_cu12-3.3.9-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.1 kB)\n",
"Downloading jax-0.6.2-py3-none-any.whl (2.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m161.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading jax_cuda12_plugin-0.6.2-cp313-cp313-manylinux2014_x86_64.whl (15.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.9/15.9 MB\u001b[0m \u001b[31m167.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading jax_cuda12_pjrt-0.6.2-py3-none-manylinux2014_x86_64.whl (125.3 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m125.3/125.3 MB\u001b[0m \u001b[31m246.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading jaxlib-0.6.2-cp313-cp313-manylinux2014_x86_64.whl (89.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.9/89.9 MB\u001b[0m \u001b[31m221.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl (706.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m706.8/706.8 MB\u001b[0m \u001b[31m71.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading ml_dtypes-0.5.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.7/4.7 MB\u001b[0m \u001b[31m284.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl (16.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.6/16.6 MB\u001b[0m \u001b[31m213.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cublas_cu12-12.9.1.4-py3-none-manylinux_2_27_x86_64.whl (581.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m581.2/581.2 MB\u001b[0m \u001b[31m87.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.9.79-py3-none-manylinux_2_25_x86_64.whl (10.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m259.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cuda_nvcc_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (40.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.5/40.5 MB\u001b[0m \u001b[31m236.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (89.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.6/89.6 MB\u001b[0m \u001b[31m226.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.9.79-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.5/3.5 MB\u001b[0m \u001b[31m220.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cufft_cu12-11.4.1.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m200.9/200.9 MB\u001b[0m \u001b[31m199.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cusolver_cu12-11.7.5.82-py3-none-manylinux_2_27_x86_64.whl (338.1 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m338.1/338.1 MB\u001b[0m \u001b[31m155.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_cusparse_cu12-12.5.10.65-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (366.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m366.5/366.5 MB\u001b[0m \u001b[31m144.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (322.3 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m322.3/322.3 MB\u001b[0m \u001b[31m169.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (39.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.7/39.7 MB\u001b[0m \u001b[31m267.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading nvidia_nvshmem_cu12-3.3.9-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (124.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.6/124.6 MB\u001b[0m \u001b[31m198.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading scipy-1.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.1 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.1/35.1 MB\u001b[0m \u001b[31m203.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading opt_einsum-3.4.0-py3-none-any.whl (71 kB)\n",
"Installing collected packages: jax-cuda12-pjrt, opt_einsum, nvidia-nvshmem-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-nvcc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, jax-cuda12-plugin, scipy, nvidia-cusparse-cu12, nvidia-cufft-cu12, nvidia-cudnn-cu12, ml_dtypes, nvidia-cusolver-cu12, jaxlib, jax\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20/20\u001b[0m [jax]32m19/20\u001b[0m [jax]ib]cusolver-cu12]2]2]\n",
"\u001b[1A\u001b[2KSuccessfully installed jax-0.6.2 jax-cuda12-pjrt-0.6.2 jax-cuda12-plugin-0.6.2 jaxlib-0.6.2 ml_dtypes-0.5.1 numpy-2.3.1 nvidia-cublas-cu12-12.9.1.4 nvidia-cuda-cupti-cu12-12.9.79 nvidia-cuda-nvcc-cu12-12.9.86 nvidia-cuda-nvrtc-cu12-12.9.86 nvidia-cuda-runtime-cu12-12.9.79 nvidia-cudnn-cu12-9.10.2.21 nvidia-cufft-cu12-11.4.1.4 nvidia-cusolver-cu12-11.7.5.82 nvidia-cusparse-cu12-12.5.10.65 nvidia-nccl-cu12-2.27.5 nvidia-nvjitlink-cu12-12.9.86 nvidia-nvshmem-cu12-3.3.9 opt_einsum-3.4.0 scipy-1.16.0\n",
"Collecting mujoco\n",
" Downloading mujoco-3.3.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (44 kB)\n",
"Collecting absl-py (from mujoco)\n",
" Downloading absl_py-2.3.0-py3-none-any.whl.metadata (2.4 kB)\n",
"Collecting etils[epath] (from mujoco)\n",
" Downloading etils-1.12.2-py3-none-any.whl.metadata (6.5 kB)\n",
"Collecting glfw (from mujoco)\n",
" Downloading glfw-2.9.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38.p39.p310.p311.p312.p313-none-manylinux_2_28_x86_64.whl.metadata (5.4 kB)\n",
"Requirement already satisfied: numpy in /home/user/miniconda/lib/python3.13/site-packages (from mujoco) (2.3.1)\n",
"Collecting pyopengl (from mujoco)\n",
" Downloading PyOpenGL-3.1.9-py3-none-any.whl.metadata (3.3 kB)\n",
"Collecting fsspec (from etils[epath]->mujoco)\n",
" Downloading fsspec-2025.5.1-py3-none-any.whl.metadata (11 kB)\n",
"Collecting importlib_resources (from etils[epath]->mujoco)\n",
" Downloading importlib_resources-6.5.2-py3-none-any.whl.metadata (3.9 kB)\n",
"Requirement already satisfied: typing_extensions in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco) (4.12.2)\n",
"Collecting zipp (from etils[epath]->mujoco)\n",
" Downloading zipp-3.23.0-py3-none-any.whl.metadata (3.6 kB)\n",
"Downloading mujoco-3.3.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m178.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading absl_py-2.3.0-py3-none-any.whl (135 kB)\n",
"Downloading etils-1.12.2-py3-none-any.whl (167 kB)\n",
"Downloading fsspec-2025.5.1-py3-none-any.whl (199 kB)\n",
"Downloading glfw-2.9.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38.p39.p310.p311.p312.p313-none-manylinux_2_28_x86_64.whl (243 kB)\n",
"Downloading importlib_resources-6.5.2-py3-none-any.whl (37 kB)\n",
"Downloading PyOpenGL-3.1.9-py3-none-any.whl (3.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.2/3.2 MB\u001b[0m \u001b[31m228.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading zipp-3.23.0-py3-none-any.whl (10 kB)\n",
"Installing collected packages: pyopengl, glfw, zipp, importlib_resources, fsspec, etils, absl-py, mujoco\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8/8\u001b[0m [mujoco]2m7/8\u001b[0m [mujoco]]\n",
"\u001b[1A\u001b[2KSuccessfully installed absl-py-2.3.0 etils-1.12.2 fsspec-2025.5.1 glfw-2.9.0 importlib_resources-6.5.2 mujoco-3.3.3 pyopengl-3.1.9 zipp-3.23.0\n",
"Collecting mujoco_mjx\n",
" Downloading mujoco_mjx-3.3.3-py3-none-any.whl.metadata (3.4 kB)\n",
"Requirement already satisfied: absl-py in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (2.3.0)\n",
"Requirement already satisfied: etils[epath] in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (1.12.2)\n",
"Requirement already satisfied: jax in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (0.6.2)\n",
"Requirement already satisfied: jaxlib in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (0.6.2)\n",
"Requirement already satisfied: mujoco>=3.3.3.dev0 in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (3.3.3)\n",
"Requirement already satisfied: scipy in /home/user/miniconda/lib/python3.13/site-packages (from mujoco_mjx) (1.16.0)\n",
"Collecting trimesh (from mujoco_mjx)\n",
" Downloading trimesh-4.6.13-py3-none-any.whl.metadata (18 kB)\n",
"Requirement already satisfied: glfw in /home/user/miniconda/lib/python3.13/site-packages (from mujoco>=3.3.3.dev0->mujoco_mjx) (2.9.0)\n",
"Requirement already satisfied: numpy in /home/user/miniconda/lib/python3.13/site-packages (from mujoco>=3.3.3.dev0->mujoco_mjx) (2.3.1)\n",
"Requirement already satisfied: pyopengl in /home/user/miniconda/lib/python3.13/site-packages (from mujoco>=3.3.3.dev0->mujoco_mjx) (3.1.9)\n",
"Requirement already satisfied: fsspec in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco_mjx) (2025.5.1)\n",
"Requirement already satisfied: importlib_resources in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco_mjx) (6.5.2)\n",
"Requirement already satisfied: typing_extensions in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco_mjx) (4.12.2)\n",
"Requirement already satisfied: zipp in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco_mjx) (3.23.0)\n",
"Requirement already satisfied: ml_dtypes>=0.5.0 in /home/user/miniconda/lib/python3.13/site-packages (from jax->mujoco_mjx) (0.5.1)\n",
"Requirement already satisfied: opt_einsum in /home/user/miniconda/lib/python3.13/site-packages (from jax->mujoco_mjx) (3.4.0)\n",
"Downloading mujoco_mjx-3.3.3-py3-none-any.whl (6.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.7/6.7 MB\u001b[0m \u001b[31m138.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading trimesh-4.6.13-py3-none-any.whl (712 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m712.4/712.4 kB\u001b[0m \u001b[31m124.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: trimesh, mujoco_mjx\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2/2\u001b[0m [mujoco_mjx]2\u001b[0m [mujoco_mjx]\n",
"\u001b[1A\u001b[2KSuccessfully installed mujoco_mjx-3.3.3 trimesh-4.6.13\n",
"Collecting brax\n",
" Downloading brax-0.12.4-py3-none-any.whl.metadata (20 kB)\n",
"Requirement already satisfied: absl-py in /home/user/miniconda/lib/python3.13/site-packages (from brax) (2.3.0)\n",
"Requirement already satisfied: etils in /home/user/miniconda/lib/python3.13/site-packages (from brax) (1.12.2)\n",
"Collecting flask (from brax)\n",
" Downloading flask-3.1.1-py3-none-any.whl.metadata (3.0 kB)\n",
"Collecting flask-cors (from brax)\n",
" Downloading flask_cors-6.0.1-py3-none-any.whl.metadata (5.3 kB)\n",
"Collecting flax (from brax)\n",
" Downloading flax-0.10.6-py3-none-any.whl.metadata (11 kB)\n",
"Requirement already satisfied: jax>=0.4.6 in /home/user/miniconda/lib/python3.13/site-packages (from brax) (0.6.2)\n",
"Requirement already satisfied: jaxlib>=0.4.6 in /home/user/miniconda/lib/python3.13/site-packages (from brax) (0.6.2)\n",
"Collecting jaxopt (from brax)\n",
" Downloading jaxopt-0.8.5-py3-none-any.whl.metadata (3.3 kB)\n",
"Requirement already satisfied: jinja2 in /home/user/miniconda/lib/python3.13/site-packages (from brax) (3.1.6)\n",
"Collecting ml-collections (from brax)\n",
" Downloading ml_collections-1.1.0-py3-none-any.whl.metadata (22 kB)\n",
"Requirement already satisfied: mujoco in /home/user/miniconda/lib/python3.13/site-packages (from brax) (3.3.3)\n",
"Requirement already satisfied: mujoco-mjx in /home/user/miniconda/lib/python3.13/site-packages (from brax) (3.3.3)\n",
"Requirement already satisfied: numpy in /home/user/miniconda/lib/python3.13/site-packages (from brax) (2.3.1)\n",
"Collecting optax (from brax)\n",
" Downloading optax-0.2.5-py3-none-any.whl.metadata (7.5 kB)\n",
"Collecting orbax-checkpoint (from brax)\n",
" Downloading orbax_checkpoint-0.11.17-py3-none-any.whl.metadata (2.2 kB)\n",
"Collecting pillow (from brax)\n",
" Downloading pillow-11.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (9.0 kB)\n",
"Requirement already satisfied: scipy in /home/user/miniconda/lib/python3.13/site-packages (from brax) (1.16.0)\n",
"Collecting tensorboardx (from brax)\n",
" Downloading tensorboardx-2.6.4-py3-none-any.whl.metadata (6.2 kB)\n",
"Requirement already satisfied: trimesh in /home/user/miniconda/lib/python3.13/site-packages (from brax) (4.6.13)\n",
"Requirement already satisfied: typing-extensions in /home/user/miniconda/lib/python3.13/site-packages (from brax) (4.12.2)\n",
"Requirement already satisfied: ml_dtypes>=0.5.0 in /home/user/miniconda/lib/python3.13/site-packages (from jax>=0.4.6->brax) (0.5.1)\n",
"Requirement already satisfied: opt_einsum in /home/user/miniconda/lib/python3.13/site-packages (from jax>=0.4.6->brax) (3.4.0)\n",
"Collecting blinker>=1.9.0 (from flask->brax)\n",
" Downloading blinker-1.9.0-py3-none-any.whl.metadata (1.6 kB)\n",
"Collecting click>=8.1.3 (from flask->brax)\n",
" Downloading click-8.2.1-py3-none-any.whl.metadata (2.5 kB)\n",
"Collecting itsdangerous>=2.2.0 (from flask->brax)\n",
" Downloading itsdangerous-2.2.0-py3-none-any.whl.metadata (1.9 kB)\n",
"Requirement already satisfied: markupsafe>=2.1.1 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax) (3.0.2)\n",
"Collecting werkzeug>=3.1.0 (from flask->brax)\n",
" Downloading werkzeug-3.1.3-py3-none-any.whl.metadata (3.7 kB)\n",
"Collecting msgpack (from flax->brax)\n",
" Downloading msgpack-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.4 kB)\n",
"Collecting tensorstore (from flax->brax)\n",
" Downloading tensorstore-0.1.75-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB)\n",
"Requirement already satisfied: rich>=11.1 in /home/user/miniconda/lib/python3.13/site-packages (from flax->brax) (13.9.4)\n",
"Requirement already satisfied: PyYAML>=5.4.1 in /home/user/miniconda/lib/python3.13/site-packages (from flax->brax) (6.0.2)\n",
"Collecting treescope>=0.1.7 (from flax->brax)\n",
" Downloading treescope-0.1.9-py3-none-any.whl.metadata (6.6 kB)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /home/user/miniconda/lib/python3.13/site-packages (from rich>=11.1->flax->brax) (2.2.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/user/miniconda/lib/python3.13/site-packages (from rich>=11.1->flax->brax) (2.19.1)\n",
"Requirement already satisfied: mdurl~=0.1 in /home/user/miniconda/lib/python3.13/site-packages (from markdown-it-py>=2.2.0->rich>=11.1->flax->brax) (0.1.0)\n",
"Requirement already satisfied: glfw in /home/user/miniconda/lib/python3.13/site-packages (from mujoco->brax) (2.9.0)\n",
"Requirement already satisfied: pyopengl in /home/user/miniconda/lib/python3.13/site-packages (from mujoco->brax) (3.1.9)\n",
"Requirement already satisfied: fsspec in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco->brax) (2025.5.1)\n",
"Requirement already satisfied: importlib_resources in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco->brax) (6.5.2)\n",
"Requirement already satisfied: zipp in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco->brax) (3.23.0)\n",
"Collecting chex>=0.1.87 (from optax->brax)\n",
" Downloading chex-0.1.89-py3-none-any.whl.metadata (17 kB)\n",
"Requirement already satisfied: setuptools in /home/user/miniconda/lib/python3.13/site-packages (from chex>=0.1.87->optax->brax) (78.1.1)\n",
"Collecting toolz>=0.9.0 (from chex>=0.1.87->optax->brax)\n",
" Downloading toolz-1.0.0-py3-none-any.whl.metadata (5.1 kB)\n",
"Requirement already satisfied: nest_asyncio in /home/user/miniconda/lib/python3.13/site-packages (from orbax-checkpoint->brax) (1.6.0)\n",
"Collecting protobuf (from orbax-checkpoint->brax)\n",
" Downloading protobuf-6.31.1-cp39-abi3-manylinux2014_x86_64.whl.metadata (593 bytes)\n",
"Collecting humanize (from orbax-checkpoint->brax)\n",
" Downloading humanize-4.12.3-py3-none-any.whl.metadata (7.8 kB)\n",
"Collecting simplejson>=3.16.0 (from orbax-checkpoint->brax)\n",
" Downloading simplejson-3.20.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.3 kB)\n",
"Requirement already satisfied: packaging in /home/user/miniconda/lib/python3.13/site-packages (from tensorboardx->brax) (24.2)\n",
"Downloading brax-0.12.4-py3-none-any.whl (341 kB)\n",
"Downloading flask-3.1.1-py3-none-any.whl (103 kB)\n",
"Downloading blinker-1.9.0-py3-none-any.whl (8.5 kB)\n",
"Downloading click-8.2.1-py3-none-any.whl (102 kB)\n",
"Downloading itsdangerous-2.2.0-py3-none-any.whl (16 kB)\n",
"Downloading werkzeug-3.1.3-py3-none-any.whl (224 kB)\n",
"Downloading flask_cors-6.0.1-py3-none-any.whl (13 kB)\n",
"Downloading flax-0.10.6-py3-none-any.whl (447 kB)\n",
"Downloading treescope-0.1.9-py3-none-any.whl (182 kB)\n",
"Downloading jaxopt-0.8.5-py3-none-any.whl (172 kB)\n",
"Downloading ml_collections-1.1.0-py3-none-any.whl (76 kB)\n",
"Downloading msgpack-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423 kB)\n",
"Downloading optax-0.2.5-py3-none-any.whl (354 kB)\n",
"Downloading chex-0.1.89-py3-none-any.whl (99 kB)\n",
"Downloading toolz-1.0.0-py3-none-any.whl (56 kB)\n",
"Downloading orbax_checkpoint-0.11.17-py3-none-any.whl (479 kB)\n",
"Downloading simplejson-3.20.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (152 kB)\n",
"Downloading tensorstore-0.1.75-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.8/18.8 MB\u001b[0m \u001b[31m25.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading humanize-4.12.3-py3-none-any.whl (128 kB)\n",
"Downloading pillow-11.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (6.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading protobuf-6.31.1-cp39-abi3-manylinux2014_x86_64.whl (321 kB)\n",
"Downloading tensorboardx-2.6.4-py3-none-any.whl (87 kB)\n",
"Installing collected packages: werkzeug, treescope, toolz, simplejson, protobuf, pillow, msgpack, ml-collections, itsdangerous, humanize, click, blinker, tensorstore, tensorboardx, flask, flask-cors, orbax-checkpoint, jaxopt, chex, optax, flax, brax\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m22/22\u001b[0m [brax]2m21/22\u001b[0m [brax]]]heckpoint]\n",
"\u001b[1A\u001b[2KSuccessfully installed blinker-1.9.0 brax-0.12.4 chex-0.1.89 click-8.2.1 flask-3.1.1 flask-cors-6.0.1 flax-0.10.6 humanize-4.12.3 itsdangerous-2.2.0 jaxopt-0.8.5 ml-collections-1.1.0 msgpack-1.1.1 optax-0.2.5 orbax-checkpoint-0.11.17 pillow-11.3.0 protobuf-6.31.1 simplejson-3.20.1 tensorboardx-2.6.4 tensorstore-0.1.75 toolz-1.0.0 treescope-0.1.9 werkzeug-3.1.3\n",
"Collecting mediapy\n",
" Downloading mediapy-1.2.4-py3-none-any.whl.metadata (4.8 kB)\n",
"Requirement already satisfied: ipython in /home/user/miniconda/lib/python3.13/site-packages (from mediapy) (9.4.0)\n",
"Collecting matplotlib (from mediapy)\n",
" Downloading matplotlib-3.10.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\n",
"Requirement already satisfied: numpy in /home/user/miniconda/lib/python3.13/site-packages (from mediapy) (2.3.1)\n",
"Requirement already satisfied: Pillow in /home/user/miniconda/lib/python3.13/site-packages (from mediapy) (11.3.0)\n",
"Requirement already satisfied: decorator in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (5.2.1)\n",
"Requirement already satisfied: ipython-pygments-lexers in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (1.1.1)\n",
"Requirement already satisfied: jedi>=0.16 in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (0.19.2)\n",
"Requirement already satisfied: matplotlib-inline in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (0.1.7)\n",
"Requirement already satisfied: pexpect>4.3 in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (4.9.0)\n",
"Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (3.0.51)\n",
"Requirement already satisfied: pygments>=2.4.0 in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (2.19.1)\n",
"Requirement already satisfied: stack_data in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (0.6.3)\n",
"Requirement already satisfied: traitlets>=5.13.0 in /home/user/miniconda/lib/python3.13/site-packages (from ipython->mediapy) (5.14.3)\n",
"Requirement already satisfied: wcwidth in /home/user/miniconda/lib/python3.13/site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython->mediapy) (0.2.13)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.4 in /home/user/miniconda/lib/python3.13/site-packages (from jedi>=0.16->ipython->mediapy) (0.8.4)\n",
"Requirement already satisfied: ptyprocess>=0.5 in /home/user/miniconda/lib/python3.13/site-packages (from pexpect>4.3->ipython->mediapy) (0.7.0)\n",
"Collecting contourpy>=1.0.1 (from matplotlib->mediapy)\n",
" Downloading contourpy-1.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.5 kB)\n",
"Collecting cycler>=0.10 (from matplotlib->mediapy)\n",
" Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n",
"Collecting fonttools>=4.22.0 (from matplotlib->mediapy)\n",
" Downloading fonttools-4.58.4-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl.metadata (106 kB)\n",
"Collecting kiwisolver>=1.3.1 (from matplotlib->mediapy)\n",
" Downloading kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.2 kB)\n",
"Requirement already satisfied: packaging>=20.0 in /home/user/miniconda/lib/python3.13/site-packages (from matplotlib->mediapy) (24.2)\n",
"Collecting pyparsing>=2.3.1 (from matplotlib->mediapy)\n",
" Downloading pyparsing-3.2.3-py3-none-any.whl.metadata (5.0 kB)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /home/user/miniconda/lib/python3.13/site-packages (from matplotlib->mediapy) (2.9.0.post0)\n",
"Requirement already satisfied: six>=1.5 in /home/user/miniconda/lib/python3.13/site-packages (from python-dateutil>=2.7->matplotlib->mediapy) (1.17.0)\n",
"Requirement already satisfied: executing>=1.2.0 in /home/user/miniconda/lib/python3.13/site-packages (from stack_data->ipython->mediapy) (2.2.0)\n",
"Requirement already satisfied: asttokens>=2.1.0 in /home/user/miniconda/lib/python3.13/site-packages (from stack_data->ipython->mediapy) (3.0.0)\n",
"Requirement already satisfied: pure-eval in /home/user/miniconda/lib/python3.13/site-packages (from stack_data->ipython->mediapy) (0.2.3)\n",
"Downloading mediapy-1.2.4-py3-none-any.whl (26 kB)\n",
"Downloading matplotlib-3.10.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m49.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading contourpy-1.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (322 kB)\n",
"Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB)\n",
"Downloading fonttools-4.58.4-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl (4.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.9/4.9 MB\u001b[0m \u001b[31m34.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pyparsing-3.2.3-py3-none-any.whl (111 kB)\n",
"Installing collected packages: pyparsing, kiwisolver, fonttools, cycler, contourpy, matplotlib, mediapy\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7/7\u001b[0m [mediapy]m6/7\u001b[0m [mediapy]ib]\n",
"\u001b[1A\u001b[2KSuccessfully installed contourpy-1.3.2 cycler-0.12.1 fonttools-4.58.4 kiwisolver-1.4.8 matplotlib-3.10.3 mediapy-1.2.4 pyparsing-3.2.3\n"
]
}
],
"source": [
"#@title Install pre-requisites\n",
"!pip install \"jax[cuda12]\"\n",
"!pip install mujoco\n",
"!pip install mujoco_mjx\n",
"!pip install brax\n",
"!pip install mediapy"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"cellView": "form",
"id": "IbZxYDxzoz5R"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tue Jul 1 12:12:35 2025 \n",
"+-----------------------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 570.158.01 Driver Version: 570.158.01 CUDA Version: 12.8 |\n",
"|-----------------------------------------+------------------------+----------------------+\n",
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|=========================================+========================+======================|\n",
"| 0 NVIDIA L40S On | 00000000:30:00.0 Off | 0 |\n",
"| N/A 38C P8 36W / 350W | 0MiB / 46068MiB | 0% Default |\n",
"| | | N/A |\n",
"+-----------------------------------------+------------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=========================================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------------------+\n",
"Setting environment variable to use GPU rendering:\n",
"env: MUJOCO_GL=egl\n",
"Checking that the installation succeeded:\n",
"Installation successful.\n"
]
}
],
"source": [
"# @title Check if MuJoCo installation was successful\n",
"\n",
"import distutils.util\n",
"import os\n",
"import subprocess\n",
"\n",
"if subprocess.run('nvidia-smi').returncode:\n",
" raise RuntimeError(\n",
" 'Cannot communicate with GPU. '\n",
" 'Make sure you are using a GPU Colab runtime. '\n",
" 'Go to the Runtime menu and select Choose runtime type.'\n",
" )\n",
"\n",
"# Add an ICD config so that glvnd can pick up the Nvidia EGL driver.\n",
"# This is usually installed as part of an Nvidia driver package, but the Colab\n",
"# kernel doesn't install its driver via APT, and as a result the ICD is missing.\n",
"# (https://github.com/NVIDIA/libglvnd/blob/master/src/EGL/icd_enumeration.md)\n",
"NVIDIA_ICD_CONFIG_PATH = '/usr/share/glvnd/egl_vendor.d/10_nvidia.json'\n",
"#if not os.path.exists(NVIDIA_ICD_CONFIG_PATH):\n",
"# with open(NVIDIA_ICD_CONFIG_PATH, 'w') as f:\n",
"# f.write(\"\"\"{\n",
"# \"file_format_version\" : \"1.0.0\",\n",
"# \"ICD\" : {\n",
"# \"library_path\" : \"libEGL_nvidia.so.0\"\n",
"# }\n",
"#}\n",
"#\"\"\")\n",
"\n",
"# Configure MuJoCo to use the EGL rendering backend (requires GPU)\n",
"print('Setting environment variable to use GPU rendering:')\n",
"%env MUJOCO_GL=egl\n",
"\n",
"try:\n",
" print('Checking that the installation succeeded:')\n",
" import mujoco\n",
"\n",
" mujoco.MjModel.from_xml_string('<mujoco/>')\n",
"except Exception as e:\n",
" raise e from RuntimeError(\n",
" 'Something went wrong during installation. Check the shell output above '\n",
" 'for more information.\\n'\n",
" 'If using a hosted Colab runtime, make sure you enable GPU acceleration '\n",
" 'by going to the Runtime menu and selecting \"Choose runtime type\".'\n",
" )\n",
"\n",
"print('Installation successful.')\n",
"\n",
"# Tell XLA to use Triton GEMM, this improves steps/sec by ~30% on some GPUs\n",
"xla_flags = os.environ.get('XLA_FLAGS', '')\n",
"xla_flags += ' --xla_gpu_triton_gemm_any=True'\n",
"os.environ['XLA_FLAGS'] = xla_flags"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"cellView": "form",
"id": "T5f4w3Kq2X14"
},
"outputs": [],
"source": [
"# @title Import packages for plotting and creating graphics\n",
"import json\n",
"import itertools\n",
"import time\n",
"from typing import Callable, List, NamedTuple, Optional, Union\n",
"import numpy as np\n",
"\n",
"# Graphics and plotting.\n",
"#print(\"Installing mediapy:\")\n",
"#!command -v ffmpeg >/dev/null || (apt update && apt install -y ffmpeg)\n",
"#!pip install -q mediapy\n",
"import mediapy as media\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# More legible printing from numpy.\n",
"np.set_printoptions(precision=3, suppress=True, linewidth=100)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"cellView": "form",
"id": "ObF1UXrkb0Nd"
},
"outputs": [],
"source": [
"# @title Import MuJoCo, MJX, and Brax\n",
"from datetime import datetime\n",
"import functools\n",
"import os\n",
"from typing import Any, Dict, Sequence, Tuple, Union\n",
"from brax import base\n",
"from brax import envs\n",
"from brax import math\n",
"from brax.base import Base, Motion, Transform\n",
"from brax.base import State as PipelineState\n",
"from brax.envs.base import Env, PipelineEnv, State\n",
"from brax.io import html, mjcf, model\n",
"from brax.mjx.base import State as MjxState\n",
"from brax.training.agents.ppo import networks as ppo_networks\n",
"from brax.training.agents.ppo import train as ppo\n",
"from brax.training.agents.sac import networks as sac_networks\n",
"from brax.training.agents.sac import train as sac\n",
"from etils import epath\n",
"from flax import struct\n",
"from flax.training import orbax_utils\n",
"from IPython.display import HTML, clear_output\n",
"import jax\n",
"from jax import numpy as jp\n",
"from matplotlib import pyplot as plt\n",
"import mediapy as media\n",
"from ml_collections import config_dict\n",
"import mujoco\n",
"from mujoco import mjx\n",
"import numpy as np\n",
"from orbax import checkpoint as ocp"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"cellView": "form",
"id": "UoTLSx4cFRdy"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting playground\n",
" Downloading playground-0.0.5-py3-none-any.whl.metadata (8.7 kB)\n",
"Requirement already satisfied: brax>=0.12.1 in /home/user/miniconda/lib/python3.13/site-packages (from playground) (0.12.4)\n",
"Requirement already satisfied: etils in /home/user/miniconda/lib/python3.13/site-packages (from playground) (1.12.2)\n",
"Requirement already satisfied: flax in /home/user/miniconda/lib/python3.13/site-packages (from playground) (0.10.6)\n",
"Requirement already satisfied: jax in /home/user/miniconda/lib/python3.13/site-packages (from playground) (0.6.2)\n",
"Collecting lxml (from playground)\n",
" Downloading lxml-6.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (6.6 kB)\n",
"Requirement already satisfied: ml-collections in /home/user/miniconda/lib/python3.13/site-packages (from playground) (1.1.0)\n",
"Requirement already satisfied: mujoco-mjx>=3.2.7 in /home/user/miniconda/lib/python3.13/site-packages (from playground) (3.3.3)\n",
"Requirement already satisfied: mujoco>=3.2.7 in /home/user/miniconda/lib/python3.13/site-packages (from playground) (3.3.3)\n",
"Requirement already satisfied: tqdm in /home/user/miniconda/lib/python3.13/site-packages (from playground) (4.67.1)\n",
"Requirement already satisfied: absl-py in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (2.3.0)\n",
"Requirement already satisfied: flask in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (3.1.1)\n",
"Requirement already satisfied: flask-cors in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (6.0.1)\n",
"Requirement already satisfied: jaxlib>=0.4.6 in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (0.6.2)\n",
"Requirement already satisfied: jaxopt in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (0.8.5)\n",
"Requirement already satisfied: jinja2 in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (3.1.6)\n",
"Requirement already satisfied: numpy in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (2.3.1)\n",
"Requirement already satisfied: optax in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (0.2.5)\n",
"Requirement already satisfied: orbax-checkpoint in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (0.11.17)\n",
"Requirement already satisfied: pillow in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (11.3.0)\n",
"Requirement already satisfied: scipy in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (1.16.0)\n",
"Requirement already satisfied: tensorboardx in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (2.6.4)\n",
"Requirement already satisfied: trimesh in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (4.6.13)\n",
"Requirement already satisfied: typing-extensions in /home/user/miniconda/lib/python3.13/site-packages (from brax>=0.12.1->playground) (4.12.2)\n",
"Requirement already satisfied: ml_dtypes>=0.5.0 in /home/user/miniconda/lib/python3.13/site-packages (from jax->playground) (0.5.1)\n",
"Requirement already satisfied: opt_einsum in /home/user/miniconda/lib/python3.13/site-packages (from jax->playground) (3.4.0)\n",
"Requirement already satisfied: glfw in /home/user/miniconda/lib/python3.13/site-packages (from mujoco>=3.2.7->playground) (2.9.0)\n",
"Requirement already satisfied: pyopengl in /home/user/miniconda/lib/python3.13/site-packages (from mujoco>=3.2.7->playground) (3.1.9)\n",
"Requirement already satisfied: fsspec in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco>=3.2.7->playground) (2025.5.1)\n",
"Requirement already satisfied: importlib_resources in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco>=3.2.7->playground) (6.5.2)\n",
"Requirement already satisfied: zipp in /home/user/miniconda/lib/python3.13/site-packages (from etils[epath]->mujoco>=3.2.7->playground) (3.23.0)\n",
"Requirement already satisfied: blinker>=1.9.0 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax>=0.12.1->playground) (1.9.0)\n",
"Requirement already satisfied: click>=8.1.3 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax>=0.12.1->playground) (8.2.1)\n",
"Requirement already satisfied: itsdangerous>=2.2.0 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax>=0.12.1->playground) (2.2.0)\n",
"Requirement already satisfied: markupsafe>=2.1.1 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax>=0.12.1->playground) (3.0.2)\n",
"Requirement already satisfied: werkzeug>=3.1.0 in /home/user/miniconda/lib/python3.13/site-packages (from flask->brax>=0.12.1->playground) (3.1.3)\n",
"Requirement already satisfied: msgpack in /home/user/miniconda/lib/python3.13/site-packages (from flax->playground) (1.1.1)\n",
"Requirement already satisfied: tensorstore in /home/user/miniconda/lib/python3.13/site-packages (from flax->playground) (0.1.75)\n",
"Requirement already satisfied: rich>=11.1 in /home/user/miniconda/lib/python3.13/site-packages (from flax->playground) (13.9.4)\n",
"Requirement already satisfied: PyYAML>=5.4.1 in /home/user/miniconda/lib/python3.13/site-packages (from flax->playground) (6.0.2)\n",
"Requirement already satisfied: treescope>=0.1.7 in /home/user/miniconda/lib/python3.13/site-packages (from flax->playground) (0.1.9)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /home/user/miniconda/lib/python3.13/site-packages (from rich>=11.1->flax->playground) (2.2.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/user/miniconda/lib/python3.13/site-packages (from rich>=11.1->flax->playground) (2.19.1)\n",
"Requirement already satisfied: mdurl~=0.1 in /home/user/miniconda/lib/python3.13/site-packages (from markdown-it-py>=2.2.0->rich>=11.1->flax->playground) (0.1.0)\n",
"Requirement already satisfied: chex>=0.1.87 in /home/user/miniconda/lib/python3.13/site-packages (from optax->brax>=0.12.1->playground) (0.1.89)\n",
"Requirement already satisfied: setuptools in /home/user/miniconda/lib/python3.13/site-packages (from chex>=0.1.87->optax->brax>=0.12.1->playground) (78.1.1)\n",
"Requirement already satisfied: toolz>=0.9.0 in /home/user/miniconda/lib/python3.13/site-packages (from chex>=0.1.87->optax->brax>=0.12.1->playground) (1.0.0)\n",
"Requirement already satisfied: nest_asyncio in /home/user/miniconda/lib/python3.13/site-packages (from orbax-checkpoint->brax>=0.12.1->playground) (1.6.0)\n",
"Requirement already satisfied: protobuf in /home/user/miniconda/lib/python3.13/site-packages (from orbax-checkpoint->brax>=0.12.1->playground) (6.31.1)\n",
"Requirement already satisfied: humanize in /home/user/miniconda/lib/python3.13/site-packages (from orbax-checkpoint->brax>=0.12.1->playground) (4.12.3)\n",
"Requirement already satisfied: simplejson>=3.16.0 in /home/user/miniconda/lib/python3.13/site-packages (from orbax-checkpoint->brax>=0.12.1->playground) (3.20.1)\n",
"Requirement already satisfied: packaging in /home/user/miniconda/lib/python3.13/site-packages (from tensorboardx->brax>=0.12.1->playground) (24.2)\n",
"Downloading playground-0.0.5-py3-none-any.whl (7.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m88.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading lxml-6.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.2/5.2 MB\u001b[0m \u001b[31m163.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: lxml, playground\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2/2\u001b[0m [playground]2\u001b[0m [playground]\n",
"\u001b[1A\u001b[2KSuccessfully installed lxml-6.0.0 playground-0.0.5\n"
]
}
],
"source": [
"#@title Install MuJoCo Playground\n",
"!pip install playground"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"cellView": "form",
"id": "gYm2h7m8w3Nv"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mujoco_menagerie not found. Downloading...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Cloning mujoco_menagerie: ██████████| 100/100 [00:13<00:00]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking out commit 14ceccf557cc47240202f2354d684eca58ff8de4\n",
"Successfully downloaded mujoco_menagerie\n"
]
}
],
"source": [
"#@title Import The Playground\n",
"\n",
"from mujoco_playground import wrapper\n",
"from mujoco_playground import registry"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LcibXbyKt4FI"
},
"source": [
"# Locomotion\n",
"\n",
"MuJoCo Playground contains a host of quadrupedal and bipedal environments (all listed below after running the command)."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "ox0Gze9Ct5AM"
},
"outputs": [
{
"data": {
"text/plain": [
"('ApolloJoystickFlatTerrain',\n",
" 'BarkourJoystick',\n",
" 'BerkeleyHumanoidJoystickFlatTerrain',\n",
" 'BerkeleyHumanoidJoystickRoughTerrain',\n",
" 'G1JoystickFlatTerrain',\n",
" 'G1JoystickRoughTerrain',\n",
" 'Go1JoystickFlatTerrain',\n",
" 'Go1JoystickRoughTerrain',\n",
" 'Go1Getup',\n",
" 'Go1Handstand',\n",
" 'Go1Footstand',\n",
" 'H1InplaceGaitTracking',\n",
" 'H1JoystickGaitTracking',\n",
" 'Op3Joystick',\n",
" 'SpotFlatTerrainJoystick',\n",
" 'SpotGetup',\n",
" 'SpotJoystickGaitTracking',\n",
" 'T1JoystickFlatTerrain',\n",
" 'T1JoystickRoughTerrain')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"registry.locomotion.ALL_ENVS"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_R01tjWfI-i6"
},
"source": [
"# Quadrupedal\n",
"\n",
"Let's jump right into quadrupedal locomotion! While we have environments available for the Google Barkour and Boston Dynamics Spot robots, the Unitree Go1 environment contains the most trainable policies that were transferred onto the real robot. We'll go right ahead and show a few policies using the Unitree Go1!\n",
"\n",
"First, let's train a joystick policy, which tracks linear and yaw velocity commands."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "kPJeoQeEJBSA"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:2025-07-01 11:54:03,909:jax._src.xla_bridge:794: An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n",
"WARNING:jax._src.xla_bridge:An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n"
]
}
],
"source": [
"env_name = 'Go1JoystickFlatTerrain'\n",
"env = registry.load(env_name)\n",
"env_cfg = registry.get_default_config(env_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6n9UT9N1wR5K"
},
"outputs": [],
"source": [
"env_cfg"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Thm7nZueM4cz"
},
"source": [
"## Joystick\n",
"\n",
"Let's train the joystick policy and visualize rollouts:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B9T_UVZYLDdM"
},
"outputs": [],
"source": [
"from mujoco_playground.config import locomotion_params\n",
"ppo_params = locomotion_params.brax_ppo_config(env_name)\n",
"ppo_params"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Aefr2OS01D9g"
},
"source": [
"Domain randomization was used to make the policy robust to sim-to-real transfer. Certain environments in the Playground have domain randomization functions implemented. They're available in the registry and can be passed directly to brax RL algorithms. The [domain randomization](https://github.com/google-deepmind/mujoco_playground/blob/main/mujoco_playground/_src/locomotion/go1/randomize.py) function randomizes over friction, armature, center of mass of the torso, and link masses, amongst other simulation parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UVA4Bn681DZT"
},
"outputs": [],
"source": [
"registry.get_domain_randomizer(env_name)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vBEEQyY6M5OC"
},
"source": [
"### Train\n",
"\n",
"The policy takes 7 minutes to train on an RTX 4090."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XKFzyP7wM5OD"
},
"outputs": [],
"source": [
"x_data, y_data, y_dataerr = [], [], []\n",
"times = [datetime.now()]\n",
"\n",
"\n",
"def progress(num_steps, metrics):\n",
" clear_output(wait=True)\n",
"\n",
" times.append(datetime.now())\n",
" x_data.append(num_steps)\n",
" y_data.append(metrics[\"eval/episode_reward\"])\n",
" y_dataerr.append(metrics[\"eval/episode_reward_std\"])\n",
"\n",
" plt.xlim([0, ppo_params[\"num_timesteps\"] * 1.25])\n",
" plt.xlabel(\"# environment steps\")\n",
" plt.ylabel(\"reward per episode\")\n",
" plt.title(f\"y={y_data[-1]:.3f}\")\n",
" plt.errorbar(x_data, y_data, yerr=y_dataerr, color=\"blue\")\n",
"\n",
" display(plt.gcf())\n",
"\n",
"randomizer = registry.get_domain_randomizer(env_name)\n",
"ppo_training_params = dict(ppo_params)\n",
"network_factory = ppo_networks.make_ppo_networks\n",
"if \"network_factory\" in ppo_params:\n",
" del ppo_training_params[\"network_factory\"]\n",
" network_factory = functools.partial(\n",
" ppo_networks.make_ppo_networks,\n",
" **ppo_params.network_factory\n",
" )\n",
"\n",
"train_fn = functools.partial(\n",
" ppo.train, **dict(ppo_training_params),\n",
" network_factory=network_factory,\n",
" randomization_fn=randomizer,\n",
" progress_fn=progress\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FGrlulWbM5OD"
},
"outputs": [],
"source": [
"make_inference_fn, params, metrics = train_fn(\n",
" environment=env,\n",
" eval_env=registry.load(env_name, config=env_cfg),\n",
" wrap_env_fn=wrapper.wrap_for_brax_training,\n",
")\n",
"print(f\"time to jit: {times[1] - times[0]}\")\n",
"print(f\"time to train: {times[-1] - times[1]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AUxSNhq3UqmC"
},
"source": [
"Let's rollout and render the resulting policy!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RBM89g5A2Yoi"
},
"outputs": [],
"source": [
"# Enable perturbation in the eval env.\n",
"env_cfg = registry.get_default_config(env_name)\n",
"env_cfg.pert_config.enable = True\n",
"env_cfg.pert_config.velocity_kick = [3.0, 6.0]\n",
"env_cfg.pert_config.kick_wait_times = [5.0, 15.0]\n",
"env_cfg.command_config.a = [1.5, 0.8, 2*jp.pi]\n",
"eval_env = registry.load(env_name, config=env_cfg)\n",
"velocity_kick_range = [0.0, 0.0] # Disable velocity kick.\n",
"kick_duration_range = [0.05, 0.2]\n",
"\n",
"jit_reset = jax.jit(eval_env.reset)\n",
"jit_step = jax.jit(eval_env.step)\n",
"jit_inference_fn = jax.jit(make_inference_fn(params, deterministic=True))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "C_1CY9xDoUKw"
},
"outputs": [],
"source": [
"#@title Rollout and Render\n",
"from mujoco_playground._src.gait import draw_joystick_command\n",
"\n",
"x_vel = 0.0 #@param {type: \"number\"}\n",
"y_vel = 0.0 #@param {type: \"number\"}\n",
"yaw_vel = 3.14 #@param {type: \"number\"}\n",
"\n",
"\n",
"def sample_pert(rng):\n",
" rng, key1, key2 = jax.random.split(rng, 3)\n",
" pert_mag = jax.random.uniform(\n",
" key1, minval=velocity_kick_range[0], maxval=velocity_kick_range[1]\n",
" )\n",
" duration_seconds = jax.random.uniform(\n",
" key2, minval=kick_duration_range[0], maxval=kick_duration_range[1]\n",
" )\n",
" duration_steps = jp.round(duration_seconds / eval_env.dt).astype(jp.int32)\n",
" state.info[\"pert_mag\"] = pert_mag\n",
" state.info[\"pert_duration\"] = duration_steps\n",
" state.info[\"pert_duration_seconds\"] = duration_seconds\n",
" return rng\n",
"\n",
"\n",
"rng = jax.random.PRNGKey(0)\n",
"rollout = []\n",
"modify_scene_fns = []\n",
"\n",
"swing_peak = []\n",
"rewards = []\n",
"linvel = []\n",
"angvel = []\n",
"track = []\n",
"foot_vel = []\n",
"rews = []\n",
"contact = []\n",
"command = jp.array([x_vel, y_vel, yaw_vel])\n",
"\n",
"state = jit_reset(rng)\n",
"if state.info[\"steps_since_last_pert\"] < state.info[\"steps_until_next_pert\"]:\n",
" rng = sample_pert(rng)\n",
"state.info[\"command\"] = command\n",
"for i in range(env_cfg.episode_length):\n",
" if state.info[\"steps_since_last_pert\"] < state.info[\"steps_until_next_pert\"]:\n",
" rng = sample_pert(rng)\n",
" act_rng, rng = jax.random.split(rng)\n",
" ctrl, _ = jit_inference_fn(state.obs, act_rng)\n",
" state = jit_step(state, ctrl)\n",
" state.info[\"command\"] = command\n",
" rews.append(\n",
" {k: v for k, v in state.metrics.items() if k.startswith(\"reward/\")}\n",
" )\n",
" rollout.append(state)\n",
" swing_peak.append(state.info[\"swing_peak\"])\n",
" rewards.append(\n",
" {k[7:]: v for k, v in state.metrics.items() if k.startswith(\"reward/\")}\n",
" )\n",
" linvel.append(env.get_global_linvel(state.data))\n",
" angvel.append(env.get_gyro(state.data))\n",
" track.append(\n",
" env._reward_tracking_lin_vel(\n",
" state.info[\"command\"], env.get_local_linvel(state.data)\n",
" )\n",
" )\n",
"\n",
" feet_vel = state.data.sensordata[env._foot_linvel_sensor_adr]\n",
" vel_xy = feet_vel[..., :2]\n",
" vel_norm = jp.sqrt(jp.linalg.norm(vel_xy, axis=-1))\n",
" foot_vel.append(vel_norm)\n",
"\n",
" contact.append(state.info[\"last_contact\"])\n",
"\n",
" xyz = np.array(state.data.xpos[env._torso_body_id])\n",
" xyz += np.array([0, 0, 0.2])\n",
" x_axis = state.data.xmat[env._torso_body_id, 0]\n",
" yaw = -np.arctan2(x_axis[1], x_axis[0])\n",
" modify_scene_fns.append(\n",
" functools.partial(\n",
" draw_joystick_command,\n",
" cmd=state.info[\"command\"],\n",
" xyz=xyz,\n",
" theta=yaw,\n",
" scl=abs(state.info[\"command\"][0])\n",
" / env_cfg.command_config.a[0],\n",
" )\n",
" )\n",
"\n",
"\n",
"render_every = 2\n",
"fps = 1.0 / eval_env.dt / render_every\n",
"traj = rollout[::render_every]\n",
"mod_fns = modify_scene_fns[::render_every]\n",
"\n",
"scene_option = mujoco.MjvOption()\n",
"scene_option.geomgroup[2] = True\n",
"scene_option.geomgroup[3] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTPOINT] = True\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_TRANSPARENT] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_PERTFORCE] = True\n",
"\n",
"frames = eval_env.render(\n",
" traj,\n",
" camera=\"track\",\n",
" scene_option=scene_option,\n",
" width=640,\n",
" height=480,\n",
" modify_scene_fns=mod_fns,\n",
")\n",
"media.show_video(frames, fps=fps, loop=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1QHdoJ2r30En"
},
"source": [
"Let's visualize the feet positions and the positional drift compared to the commanded linear and angular velocity. This is useful for debugging how well the policy follows the commands!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "gyyynm3ozEet"
},
"outputs": [],
"source": [
"#@title Plot each foot in a 2x2 grid.\n",
"\n",
"swing_peak = jp.array(swing_peak)\n",
"names = [\"FR\", \"FL\", \"RR\", \"RL\"]\n",
"colors = [\"r\", \"g\", \"b\", \"y\"]\n",
"fig, axs = plt.subplots(2, 2)\n",
"for i, ax in enumerate(axs.flat):\n",
" ax.plot(swing_peak[:, i], color=colors[i])\n",
" ax.set_ylim([0, env_cfg.reward_config.max_foot_height * 1.25])\n",
" ax.axhline(env_cfg.reward_config.max_foot_height, color=\"k\", linestyle=\"--\")\n",
" ax.set_title(names[i])\n",
" ax.set_xlabel(\"time\")\n",
" ax.set_ylabel(\"height\")\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"linvel_x = jp.array(linvel)[:, 0]\n",
"linvel_y = jp.array(linvel)[:, 1]\n",
"angvel_yaw = jp.array(angvel)[:, 2]\n",
"\n",
"# Plot whether velocity is within the command range.\n",
"linvel_x = jp.convolve(linvel_x, jp.ones(10) / 10, mode=\"same\")\n",
"linvel_y = jp.convolve(linvel_y, jp.ones(10) / 10, mode=\"same\")\n",
"angvel_yaw = jp.convolve(angvel_yaw, jp.ones(10) / 10, mode=\"same\")\n",
"\n",
"fig, axes = plt.subplots(3, 1, figsize=(10, 10))\n",
"axes[0].plot(linvel_x)\n",
"axes[1].plot(linvel_y)\n",
"axes[2].plot(angvel_yaw)\n",
"\n",
"axes[0].set_ylim(\n",
" -env_cfg.command_config.a[0], env_cfg.command_config.a[0]\n",
")\n",
"axes[1].set_ylim(\n",
" -env_cfg.command_config.a[1], env_cfg.command_config.a[1]\n",
")\n",
"axes[2].set_ylim(\n",
" -env_cfg.command_config.a[2], env_cfg.command_config.a[2]\n",
")\n",
"\n",
"for i, ax in enumerate(axes):\n",
" ax.axhline(state.info[\"command\"][i], color=\"red\", linestyle=\"--\")\n",
"\n",
"labels = [\"dx\", \"dy\", \"dyaw\"]\n",
"for i, ax in enumerate(axes):\n",
" ax.set_ylabel(labels[i])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "t1QAHuYBQBbl"
},
"source": [
"Now let's visualize what it looks like to slowly increase linear velocity commands."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Q0EuQiVlzh5u"
},
"outputs": [],
"source": [
"#@title Slowly increase linvel commands\n",
"\n",
"rng = jax.random.PRNGKey(0)\n",
"rollout = []\n",
"modify_scene_fns = []\n",
"swing_peak = []\n",
"linvel = []\n",
"angvel = []\n",
"\n",
"x = -0.25\n",
"command = jp.array([x, 0, 0])\n",
"state = jit_reset(rng)\n",
"for i in range(1_400):\n",
" # Increase the forward velocity by 0.25 m/s every 200 steps.\n",
" if i % 200 == 0:\n",
" x += 0.25\n",
" print(f\"Setting x to {x}\")\n",
" command = jp.array([x, 0, 0])\n",
" state.info[\"command\"] = command\n",
" if state.info[\"steps_since_last_pert\"] < state.info[\"steps_until_next_pert\"]:\n",
" rng = sample_pert(rng)\n",
" act_rng, rng = jax.random.split(rng)\n",
" ctrl, _ = jit_inference_fn(state.obs, act_rng)\n",
" state = jit_step(state, ctrl)\n",
" rollout.append(state)\n",
" swing_peak.append(state.info[\"swing_peak\"])\n",
" linvel.append(env.get_global_linvel(state.data))\n",
" angvel.append(env.get_gyro(state.data))\n",
" xyz = np.array(state.data.xpos[env._torso_body_id])\n",
" xyz += np.array([0, 0, 0.2])\n",
" x_axis = state.data.xmat[env._torso_body_id, 0]\n",
" yaw = -np.arctan2(x_axis[1], x_axis[0])\n",
" modify_scene_fns.append(\n",
" functools.partial(\n",
" draw_joystick_command,\n",
" cmd=command,\n",
" xyz=xyz,\n",
" theta=yaw,\n",
" scl=abs(command[0]) / env_cfg.command_config.a[0],\n",
" )\n",
" )\n",
"\n",
"\n",
"# Plot each foot in a 2x2 grid.\n",
"swing_peak = jp.array(swing_peak)\n",
"names = [\"FR\", \"FL\", \"RR\", \"RL\"]\n",
"colors = [\"r\", \"g\", \"b\", \"y\"]\n",
"fig, axs = plt.subplots(2, 2)\n",
"for i, ax in enumerate(axs.flat):\n",
" ax.plot(swing_peak[:, i], color=colors[i])\n",
" ax.set_ylim([0, env_cfg.reward_config.max_foot_height * 1.25])\n",
" ax.axhline(env_cfg.reward_config.max_foot_height, color=\"k\", linestyle=\"--\")\n",
" ax.set_title(names[i])\n",
" ax.set_xlabel(\"time\")\n",
" ax.set_ylabel(\"height\")\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"linvel_x = jp.array(linvel)[:, 0]\n",
"linvel_y = jp.array(linvel)[:, 1]\n",
"angvel_yaw = jp.array(angvel)[:, 2]\n",
"\n",
"# Plot whether velocity is within the command range.\n",
"linvel_x = jp.convolve(linvel_x, jp.ones(10) / 10, mode=\"same\")\n",
"linvel_y = jp.convolve(linvel_y, jp.ones(10) / 10, mode=\"same\")\n",
"angvel_yaw = jp.convolve(angvel_yaw, jp.ones(10) / 10, mode=\"same\")\n",
"\n",
"fig, axes = plt.subplots(3, 1, figsize=(10, 10))\n",
"axes[0].plot(linvel_x)\n",
"axes[1].plot(linvel_y)\n",
"axes[2].plot(angvel_yaw)\n",
"\n",
"axes[0].set_ylim(\n",
" -env_cfg.command_config.a[0], env_cfg.command_config.a[0]\n",
")\n",
"axes[1].set_ylim(\n",
" -env_cfg.command_config.a[1], env_cfg.command_config.a[1]\n",
")\n",
"axes[2].set_ylim(\n",
" -env_cfg.command_config.a[2], env_cfg.command_config.a[2]\n",
")\n",
"\n",
"for i, ax in enumerate(axes):\n",
" ax.axhline(state.info[\"command\"][i], color=\"red\", linestyle=\"--\")\n",
"\n",
"labels = [\"dx\", \"dy\", \"dyaw\"]\n",
"for i, ax in enumerate(axes):\n",
" ax.set_ylabel(labels[i])\n",
"\n",
"\n",
"render_every = 2\n",
"fps = 1.0 / eval_env.dt / render_every\n",
"print(f\"fps: {fps}\")\n",
"\n",
"traj = rollout[::render_every]\n",
"mod_fns = modify_scene_fns[::render_every]\n",
"assert len(traj) == len(mod_fns)\n",
"\n",
"scene_option = mujoco.MjvOption()\n",
"scene_option.geomgroup[2] = True\n",
"scene_option.geomgroup[3] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTPOINT] = True\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_PERTFORCE] = True\n",
"\n",
"frames = eval_env.render(\n",
" traj,\n",
" camera=\"track\",\n",
" height=480,\n",
" width=640,\n",
" modify_scene_fns=mod_fns,\n",
" scene_option=scene_option,\n",
")\n",
"media.show_video(frames, fps=fps, loop=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0RHZvXgmzrEJ"
},
"source": [
"## Handstand\n",
"\n",
"Additional policies are available for the Unitree Go1 such as fall-recovery, handstand, and footstand policies. We'll use the handstand policy as an opportunity to demonstrate finetuning policies from prior checkpoints. This will allow us to quickly iterate on training curriculums by modifying the enviornment config between runs.\n",
"\n",
"For the Go1 handstand policy, we'll first train with the default configuration, and then add an energy penalty to make the policy smoother and more likely to transfer onto the robot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RYriZOAxzEk_"
},
"outputs": [],
"source": [
"from mujoco_playground.config import locomotion_params\n",
"\n",
"env_name = 'Go1Handstand'\n",
"env = registry.load(env_name)\n",
"env_cfg = registry.get_default_config(env_name)\n",
"ppo_params = locomotion_params.brax_ppo_config(env_name)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3nB5ugbdS5kk"
},
"source": [
"Let's create a checkpoint directory and then train a policy with checkpointing."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EyEDpHisS7eO"
},
"outputs": [],
"source": [
"ckpt_path = epath.Path(\"checkpoints\").resolve() / env_name\n",
"ckpt_path.mkdir(parents=True, exist_ok=True)\n",
"print(f\"{ckpt_path}\")\n",
"\n",
"with open(ckpt_path / \"config.json\", \"w\") as fp:\n",
" json.dump(env_cfg.to_dict(), fp, indent=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lCRUYofXSNGT"
},
"outputs": [],
"source": [
"#@title Training fn definition\n",
"x_data, y_data, y_dataerr = [], [], []\n",
"times = [datetime.now()]\n",
"\n",
"\n",
"def policy_params_fn(current_step, make_policy, params):\n",
" del make_policy # Unused.\n",
" orbax_checkpointer = ocp.PyTreeCheckpointer()\n",
" save_args = orbax_utils.save_args_from_target(params)\n",
" path = ckpt_path / f\"{current_step}\"\n",
" orbax_checkpointer.save(path, params, force=True, save_args=save_args)\n",
"\n",
"\n",
"def progress(num_steps, metrics):\n",
" clear_output(wait=True)\n",
"\n",
" times.append(datetime.now())\n",
" x_data.append(num_steps)\n",
" y_data.append(metrics[\"eval/episode_reward\"])\n",
" y_dataerr.append(metrics[\"eval/episode_reward_std\"])\n",
"\n",
" plt.xlim([0, ppo_params[\"num_timesteps\"] * 1.25])\n",
" plt.xlabel(\"# environment steps\")\n",
" plt.ylabel(\"reward per episode\")\n",
" plt.title(f\"y={y_data[-1]:.3f}\")\n",
" plt.errorbar(x_data, y_data, yerr=y_dataerr, color=\"blue\")\n",
"\n",
" display(plt.gcf())\n",
"\n",
"randomizer = registry.get_domain_randomizer(env_name)\n",
"ppo_training_params = dict(ppo_params)\n",
"network_factory = ppo_networks.make_ppo_networks\n",
"if \"network_factory\" in ppo_params:\n",
" del ppo_training_params[\"network_factory\"]\n",
" network_factory = functools.partial(\n",
" ppo_networks.make_ppo_networks,\n",
" **ppo_params.network_factory\n",
" )\n",
"\n",
"train_fn = functools.partial(\n",
" ppo.train, **dict(ppo_training_params),\n",
" network_factory=network_factory,\n",
" randomization_fn=randomizer,\n",
" progress_fn=progress,\n",
" policy_params_fn=policy_params_fn,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "A1oK80x1anPp"
},
"source": [
"The initial policy takes 8 minutes to train on an RTX 4090."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MY6P3abhSNGU"
},
"outputs": [],
"source": [
"make_inference_fn, params, metrics = train_fn(\n",
" environment=registry.load(env_name, config=env_cfg),\n",
" eval_env=registry.load(env_name, config=env_cfg),\n",
" wrap_env_fn=wrapper.wrap_for_brax_training,\n",
")\n",
"print(f\"time to jit: {times[1] - times[0]}\")\n",
"print(f\"time to train: {times[-1] - times[1]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4s6PkZ4GWV4Z"
},
"source": [
"Let's visualize the current policy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "WiWOtc_6WbcX"
},
"outputs": [],
"source": [
"#@title Rollout and Render\n",
"inference_fn = make_inference_fn(params, deterministic=True)\n",
"jit_inference_fn = jax.jit(inference_fn)\n",
"\n",
"eval_env = registry.load(env_name, config=env_cfg)\n",
"jit_reset = jax.jit(eval_env.reset)\n",
"jit_step = jax.jit(eval_env.step)\n",
"\n",
"rng = jax.random.PRNGKey(12345)\n",
"rollout = []\n",
"rewards = []\n",
"torso_height = []\n",
"actions = []\n",
"torques = []\n",
"power = []\n",
"qfrc_constraint = []\n",
"qvels = []\n",
"power1 = []\n",
"power2 = []\n",
"for _ in range(10):\n",
" rng, reset_rng = jax.random.split(rng)\n",
" state = jit_reset(reset_rng)\n",
" for i in range(env_cfg.episode_length // 2):\n",
" act_rng, rng = jax.random.split(rng)\n",
" ctrl, _ = jit_inference_fn(state.obs, act_rng)\n",
" actions.append(ctrl)\n",
" state = jit_step(state, ctrl)\n",
" rollout.append(state)\n",
" rewards.append(\n",
" {k[7:]: v for k, v in state.metrics.items() if k.startswith(\"reward/\")}\n",
" )\n",
" torso_height.append(state.data.qpos[2])\n",
" torques.append(state.data.actuator_force)\n",
" qvel = state.data.qvel[6:]\n",
" power.append(jp.sum(jp.abs(qvel * state.data.actuator_force)))\n",
" qfrc_constraint.append(jp.linalg.norm(state.data.qfrc_constraint[6:]))\n",
" qvels.append(jp.max(jp.abs(qvel)))\n",
" frc = state.data.actuator_force\n",
" qvel = state.data.qvel[6:]\n",
" power1.append(jp.sum(frc * qvel))\n",
" power2.append(jp.sum(jp.abs(frc * qvel)))\n",
"\n",
"\n",
"render_every = 2\n",
"fps = 1.0 / eval_env.dt / render_every\n",
"traj = rollout[::render_every]\n",
"\n",
"scene_option = mujoco.MjvOption()\n",
"scene_option.geomgroup[2] = True\n",
"scene_option.geomgroup[3] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTPOINT] = True\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTFORCE] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_TRANSPARENT] = False\n",
"\n",
"frames = eval_env.render(\n",
" traj, camera=\"side\", scene_option=scene_option, height=480, width=640\n",
")\n",
"media.show_video(frames, fps=fps, loop=False)\n",
"\n",
"power = jp.array(power1)\n",
"print(f\"Max power: {jp.max(power)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v5p0Z3PPSRik"
},
"source": [
"Notice that the above policy looks jittery and unlikely to transfer on the robot. The max power output is also quite high.\n",
"\n",
"The sim-to-real deployment of the handstand policy was trained using a curriculum on the `energy_termination_threshold`, `energy` and `dof_acc`, which are config values that penalize high torques and high power output. Let's finetune the above policy with a decreased `energy_termination_threshold`, as well as non-zero values for `energy` and `dof_acc` rewards to get a smoother policy."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hrjoVL-_WN-r"
},
"source": [
"### Finetune the previous checkpoint"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jTxAySRSSu96"
},
"outputs": [],
"source": [
"env_cfg = registry.get_default_config(env_name)\n",
"env_cfg.energy_termination_threshold = 400 # lower energy termination threshold\n",
"env_cfg.reward_config.energy = -0.003 # non-zero negative `energy` reward\n",
"env_cfg.reward_config.dof_acc = -2.5e-7 # non-zero negative `dof_acc` reward\n",
"\n",
"FINETUNE_PATH = epath.Path(ckpt_path)\n",
"latest_ckpts = list(FINETUNE_PATH.glob(\"*\"))\n",
"latest_ckpts = [ckpt for ckpt in latest_ckpts if ckpt.is_dir()]\n",
"latest_ckpts.sort(key=lambda x: int(x.name))\n",
"latest_ckpt = latest_ckpts[-1]\n",
"restore_checkpoint_path = latest_ckpt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_M5IqOR6z4bV"
},
"outputs": [],
"source": [
"x_data, y_data, y_dataerr = [], [], []\n",
"times = [datetime.now()]\n",
"\n",
"make_inference_fn, params, metrics = train_fn(\n",
" environment=registry.load(env_name, config=env_cfg),\n",
" eval_env=registry.load(env_name, config=env_cfg),\n",
" wrap_env_fn=wrapper.wrap_for_brax_training,\n",
" restore_checkpoint_path=restore_checkpoint_path, # restore from the checkpoint!\n",
" seed=1,\n",
")\n",
"print(f\"time to jit: {times[1] - times[0]}\")\n",
"print(f\"time to train: {times[-1] - times[1]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "tzG8eY2lz4dk"
},
"outputs": [],
"source": [
"#@title Rollout and Render Finetune Policy\n",
"inference_fn = make_inference_fn(params, deterministic=True)\n",
"jit_inference_fn = jax.jit(inference_fn)\n",
"\n",
"eval_env = registry.load(env_name, config=env_cfg)\n",
"jit_reset = jax.jit(eval_env.reset)\n",
"jit_step = jax.jit(eval_env.step)\n",
"\n",
"rng = jax.random.PRNGKey(12345)\n",
"rollout = []\n",
"rewards = []\n",
"torso_height = []\n",
"actions = []\n",
"torques = []\n",
"power = []\n",
"qfrc_constraint = []\n",
"qvels = []\n",
"power1 = []\n",
"power2 = []\n",
"for _ in range(10):\n",
" rng, reset_rng = jax.random.split(rng)\n",
" state = jit_reset(reset_rng)\n",
" for i in range(env_cfg.episode_length // 2):\n",
" act_rng, rng = jax.random.split(rng)\n",
" ctrl, _ = jit_inference_fn(state.obs, act_rng)\n",
" actions.append(ctrl)\n",
" state = jit_step(state, ctrl)\n",
" rollout.append(state)\n",
" rewards.append(\n",
" {k[7:]: v for k, v in state.metrics.items() if k.startswith(\"reward/\")}\n",
" )\n",
" torso_height.append(state.data.qpos[2])\n",
" torques.append(state.data.actuator_force)\n",
" qvel = state.data.qvel[6:]\n",
" power.append(jp.sum(jp.abs(qvel * state.data.actuator_force)))\n",
" qfrc_constraint.append(jp.linalg.norm(state.data.qfrc_constraint[6:]))\n",
" qvels.append(jp.max(jp.abs(qvel)))\n",
" frc = state.data.actuator_force\n",
" qvel = state.data.qvel[6:]\n",
" power1.append(jp.sum(frc * qvel))\n",
" power2.append(jp.sum(jp.abs(frc * qvel)))\n",
"\n",
"\n",
"render_every = 2\n",
"fps = 1.0 / eval_env.dt / render_every\n",
"traj = rollout[::render_every]\n",
"\n",
"scene_option = mujoco.MjvOption()\n",
"scene_option.geomgroup[2] = True\n",
"scene_option.geomgroup[3] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTPOINT] = True\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTFORCE] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_TRANSPARENT] = False\n",
"\n",
"frames = eval_env.render(\n",
" traj, camera=\"side\", scene_option=scene_option, height=480, width=640\n",
")\n",
"media.show_video(frames, fps=fps, loop=False)\n",
"\n",
"power = jp.array(power1)\n",
"print(f\"Max power: {jp.max(power)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yCyibqGMiAca"
},
"source": [
"The final policy should exhibit smoother behavior and have less power output! Feel free to finetune the policy some more using different reward terms to get the best behavior."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "26o77FfWXvVp"
},
"source": [
"# Bipedal\n",
"\n",
"MuJoCo Playground also comes with a host of bipedal environments, such as the Berkely Humanoid and the Unitree G1/H1. Let's demonstrate a joystick policy on the Berkeley Humanoid. The initial policy takes 17 minutes to train on an RTX 4090."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ESNd18FUanPt"
},
"outputs": [],
"source": [
"env_name = 'BerkeleyHumanoidJoystickFlatTerrain'\n",
"env = registry.load(env_name)\n",
"env_cfg = registry.get_default_config(env_name)\n",
"ppo_params = locomotion_params.brax_ppo_config(env_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nibLoRu8anPt"
},
"outputs": [],
"source": [
"x_data, y_data, y_dataerr = [], [], []\n",
"times = [datetime.now()]\n",
"\n",
"randomizer = registry.get_domain_randomizer(env_name)\n",
"ppo_training_params = dict(ppo_params)\n",
"network_factory = ppo_networks.make_ppo_networks\n",
"if \"network_factory\" in ppo_params:\n",
" del ppo_training_params[\"network_factory\"]\n",
" network_factory = functools.partial(\n",
" ppo_networks.make_ppo_networks,\n",
" **ppo_params.network_factory\n",
" )\n",
"\n",
"train_fn = functools.partial(\n",
" ppo.train, **dict(ppo_training_params),\n",
" network_factory=network_factory,\n",
" randomization_fn=randomizer,\n",
" progress_fn=progress\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "16dqomv0anPt"
},
"outputs": [],
"source": [
"make_inference_fn, params, metrics = train_fn(\n",
" environment=env,\n",
" eval_env=registry.load(env_name, config=env_cfg),\n",
" wrap_env_fn=wrapper.wrap_for_brax_training,\n",
")\n",
"print(f\"time to jit: {times[1] - times[0]}\")\n",
"print(f\"time to train: {times[-1] - times[1]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "sBHDF-JFanPt"
},
"outputs": [],
"source": [
"#@title Rollout and Render\n",
"from mujoco_playground._src.gait import draw_joystick_command\n",
"\n",
"env = registry.load(env_name)\n",
"eval_env = registry.load(env_name)\n",
"jit_reset = jax.jit(eval_env.reset)\n",
"jit_step = jax.jit(eval_env.step)\n",
"jit_inference_fn = jax.jit(make_inference_fn(params, deterministic=True))\n",
"\n",
"rng = jax.random.PRNGKey(1)\n",
"\n",
"rollout = []\n",
"modify_scene_fns = []\n",
"\n",
"x_vel = 1.0 #@param {type: \"number\"}\n",
"y_vel = 0.0 #@param {type: \"number\"}\n",
"yaw_vel = 0.0 #@param {type: \"number\"}\n",
"command = jp.array([x_vel, y_vel, yaw_vel])\n",
"\n",
"phase_dt = 2 * jp.pi * eval_env.dt * 1.5\n",
"phase = jp.array([0, jp.pi])\n",
"\n",
"for j in range(1):\n",
" print(f\"episode {j}\")\n",
" state = jit_reset(rng)\n",
" state.info[\"phase_dt\"] = phase_dt\n",
" state.info[\"phase\"] = phase\n",
" for i in range(env_cfg.episode_length):\n",
" act_rng, rng = jax.random.split(rng)\n",
" ctrl, _ = jit_inference_fn(state.obs, act_rng)\n",
" state = jit_step(state, ctrl)\n",
" if state.done:\n",
" break\n",
" state.info[\"command\"] = command\n",
" rollout.append(state)\n",
"\n",
" xyz = np.array(state.data.xpos[eval_env.mj_model.body(\"torso\").id])\n",
" xyz += np.array([0, 0.0, 0])\n",
" x_axis = state.data.xmat[eval_env._torso_body_id, 0]\n",
" yaw = -np.arctan2(x_axis[1], x_axis[0])\n",
" modify_scene_fns.append(\n",
" functools.partial(\n",
" draw_joystick_command,\n",
" cmd=state.info[\"command\"],\n",
" xyz=xyz,\n",
" theta=yaw,\n",
" scl=np.linalg.norm(state.info[\"command\"]),\n",
" )\n",
" )\n",
"\n",
"render_every = 1\n",
"fps = 1.0 / eval_env.dt / render_every\n",
"print(f\"fps: {fps}\")\n",
"traj = rollout[::render_every]\n",
"mod_fns = modify_scene_fns[::render_every]\n",
"\n",
"scene_option = mujoco.MjvOption()\n",
"scene_option.geomgroup[2] = True\n",
"scene_option.geomgroup[3] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_CONTACTPOINT] = True\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_TRANSPARENT] = False\n",
"scene_option.flags[mujoco.mjtVisFlag.mjVIS_PERTFORCE] = False\n",
"\n",
"frames = eval_env.render(\n",
" traj,\n",
" camera=\"track\",\n",
" scene_option=scene_option,\n",
" width=640*2,\n",
" height=480,\n",
" modify_scene_fns=mod_fns,\n",
")\n",
"media.show_video(frames, fps=fps, loop=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CBtrAqns35sI"
},
"source": [
"🙌 Hasta la vista!"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"machine_shape": "hm",
"private_outputs": true,
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|