|
import os |
|
import re |
|
from http import HTTPStatus |
|
from typing import Dict, List, Optional, Tuple |
|
import base64 |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from tavily import TavilyClient |
|
|
|
|
|
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. |
|
When asked to create an application, you should: |
|
1. Understand the user's requirements |
|
2. Generate clean, working code |
|
3. Provide HTML output when appropriate for web applications |
|
4. Include necessary comments and documentation |
|
5. Ensure the code is functional and follows best practices |
|
|
|
If an image is provided, analyze it and use the visual information to better understand the user's requirements. |
|
|
|
Always respond with code that can be executed or rendered directly. |
|
|
|
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" |
|
|
|
|
|
SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements. |
|
When asked to create an application, you should: |
|
1. Understand the user's requirements |
|
2. Use web search when needed to find the latest information, best practices, or specific technologies |
|
3. Generate clean, working code |
|
4. Provide HTML output when appropriate for web applications |
|
5. Include necessary comments and documentation |
|
6. Ensure the code is functional and follows best practices |
|
|
|
If an image is provided, analyze it and use the visual information to better understand the user's requirements. |
|
|
|
Always respond with code that can be executed or rendered directly. |
|
|
|
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" |
|
|
|
|
|
AVAILABLE_MODELS = [ |
|
{ |
|
"name": "DeepSeek V3", |
|
"id": "deepseek-ai/DeepSeek-V3-0324", |
|
"description": "DeepSeek V3 model for code generation" |
|
}, |
|
{ |
|
"name": "DeepSeek R1", |
|
"id": "deepseek-ai/DeepSeek-R1-0528", |
|
"description": "DeepSeek R1 model for code generation" |
|
}, |
|
{ |
|
"name": "ERNIE-4.5-VL", |
|
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", |
|
"description": "ERNIE-4.5-VL model for multimodal code generation with image support" |
|
}, |
|
{ |
|
"name": "MiniMax M1", |
|
"id": "MiniMaxAI/MiniMax-M1-80k", |
|
"description": "MiniMax M1 model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "Qwen3-235B-A22B", |
|
"id": "Qwen/Qwen3-235B-A22B", |
|
"description": "Qwen3-235B-A22B model for code generation and general tasks" |
|
} |
|
] |
|
|
|
DEMO_LIST = [ |
|
{ |
|
"title": "Todo App", |
|
"description": "Create a simple todo application with add, delete, and mark as complete functionality" |
|
}, |
|
{ |
|
"title": "Calculator", |
|
"description": "Build a basic calculator with addition, subtraction, multiplication, and division" |
|
}, |
|
{ |
|
"title": "Weather Dashboard", |
|
"description": "Create a weather dashboard that displays current weather information" |
|
}, |
|
{ |
|
"title": "Chat Interface", |
|
"description": "Build a chat interface with message history and user input" |
|
}, |
|
{ |
|
"title": "E-commerce Product Card", |
|
"description": "Create a product card component for an e-commerce website" |
|
}, |
|
{ |
|
"title": "Login Form", |
|
"description": "Build a responsive login form with validation" |
|
}, |
|
{ |
|
"title": "Dashboard Layout", |
|
"description": "Create a dashboard layout with sidebar navigation and main content area" |
|
}, |
|
{ |
|
"title": "Data Table", |
|
"description": "Build a data table with sorting and filtering capabilities" |
|
}, |
|
{ |
|
"title": "Image Gallery", |
|
"description": "Create an image gallery with lightbox functionality and responsive grid layout" |
|
}, |
|
{ |
|
"title": "UI from Image", |
|
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" |
|
} |
|
] |
|
|
|
|
|
YOUR_API_TOKEN = os.getenv('HF_TOKEN') |
|
client = InferenceClient( |
|
provider="auto", |
|
api_key=YOUR_API_TOKEN, |
|
bill_to="huggingface" |
|
) |
|
|
|
|
|
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') |
|
tavily_client = None |
|
if TAVILY_API_KEY: |
|
try: |
|
tavily_client = TavilyClient(api_key=TAVILY_API_KEY) |
|
except Exception as e: |
|
print(f"Failed to initialize Tavily client: {e}") |
|
tavily_client = None |
|
|
|
History = List[Tuple[str, str]] |
|
Messages = List[Dict[str, str]] |
|
|
|
def history_to_messages(history: History, system: str) -> Messages: |
|
messages = [{'role': 'system', 'content': system}] |
|
for h in history: |
|
|
|
user_content = h[0] |
|
if isinstance(user_content, list): |
|
|
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
messages.append({'role': 'user', 'content': user_content}) |
|
messages.append({'role': 'assistant', 'content': h[1]}) |
|
return messages |
|
|
|
def messages_to_history(messages: Messages) -> Tuple[str, History]: |
|
assert messages[0]['role'] == 'system' |
|
history = [] |
|
for q, r in zip(messages[1::2], messages[2::2]): |
|
|
|
user_content = q['content'] |
|
if isinstance(user_content, list): |
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
history.append([user_content, r['content']]) |
|
return history |
|
|
|
def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: |
|
"""Convert history tuples to chatbot message format""" |
|
messages = [] |
|
for user_msg, assistant_msg in history: |
|
|
|
if isinstance(user_msg, list): |
|
text_content = "" |
|
for item in user_msg: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_msg = text_content if text_content else str(user_msg) |
|
|
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
return messages |
|
|
|
def remove_code_block(text): |
|
|
|
patterns = [ |
|
r'```(?:html|HTML)\n([\s\S]+?)\n```', |
|
r'```\n([\s\S]+?)\n```', |
|
r'```([\s\S]+?)```' |
|
] |
|
for pattern in patterns: |
|
match = re.search(pattern, text, re.DOTALL) |
|
if match: |
|
extracted = match.group(1).strip() |
|
return extracted |
|
|
|
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'): |
|
return text.strip() |
|
return text.strip() |
|
|
|
def history_render(history: History): |
|
return gr.update(visible=True), history |
|
|
|
def clear_history(): |
|
return [], [] |
|
|
|
def update_image_input_visibility(model): |
|
"""Update image input visibility based on selected model""" |
|
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" |
|
return gr.update(visible=is_ernie_vl) |
|
|
|
def process_image_for_model(image): |
|
"""Convert image to base64 for model input""" |
|
if image is None: |
|
return None |
|
|
|
|
|
import io |
|
import base64 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
|
|
buffer = io.BytesIO() |
|
image.save(buffer, format='PNG') |
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
return f"data:image/png;base64,{img_str}" |
|
|
|
def create_multimodal_message(text, image=None): |
|
"""Create a multimodal message with text and optional image""" |
|
if image is None: |
|
return {"role": "user", "content": text} |
|
|
|
content = [ |
|
{ |
|
"type": "text", |
|
"text": text |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": process_image_for_model(image) |
|
} |
|
} |
|
] |
|
|
|
return {"role": "user", "content": content} |
|
|
|
|
|
|
|
|
|
def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str: |
|
"""Perform web search using Tavily with default parameters""" |
|
if not tavily_client: |
|
return "Web search is not available. Please set the TAVILY_API_KEY environment variable." |
|
|
|
try: |
|
|
|
search_params = { |
|
"search_depth": "advanced", |
|
"max_results": min(max(1, max_results), 20) |
|
} |
|
if include_domains is not None: |
|
search_params["include_domains"] = include_domains |
|
if exclude_domains is not None: |
|
search_params["exclude_domains"] = exclude_domains |
|
|
|
response = tavily_client.search(query, **search_params) |
|
|
|
search_results = [] |
|
for result in response.get('results', []): |
|
title = result.get('title', 'No title') |
|
url = result.get('url', 'No URL') |
|
content = result.get('content', 'No content') |
|
search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n") |
|
|
|
if search_results: |
|
return "Web Search Results:\n\n" + "\n---\n".join(search_results) |
|
else: |
|
return "No search results found." |
|
|
|
except Exception as e: |
|
return f"Search error: {str(e)}" |
|
|
|
def enhance_query_with_search(query: str, enable_search: bool) -> str: |
|
"""Enhance the query with web search results if search is enabled""" |
|
if not enable_search or not tavily_client: |
|
return query |
|
|
|
|
|
search_results = perform_web_search(query) |
|
|
|
|
|
enhanced_query = f"""Original Query: {query} |
|
|
|
{search_results} |
|
|
|
Please use the search results above to help create the requested application with the most up-to-date information and best practices.""" |
|
|
|
return enhanced_query |
|
|
|
def send_to_sandbox(code): |
|
|
|
wrapped_code = f""" |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta charset=\"UTF-8\"> |
|
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> |
|
<script> |
|
// Safe localStorage polyfill |
|
const safeStorage = {{ |
|
_data: {{}}, |
|
getItem: function(key) {{ return this._data[key] || null; }}, |
|
setItem: function(key, value) {{ this._data[key] = value; }}, |
|
removeItem: function(key) {{ delete this._data[key]; }}, |
|
clear: function() {{ this._data = {{}}; }} |
|
}}; |
|
Object.defineProperty(window, 'localStorage', {{ |
|
value: safeStorage, |
|
writable: false |
|
}}); |
|
window.onerror = function(message, source, lineno, colno, error) {{ |
|
console.error('Error:', message); |
|
}}; |
|
</script> |
|
</head> |
|
<body> |
|
{code} |
|
</body> |
|
</html> |
|
""" |
|
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') |
|
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" |
|
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' |
|
return iframe |
|
|
|
def demo_card_click(e: gr.EventData): |
|
try: |
|
|
|
if hasattr(e, '_data') and e._data: |
|
|
|
if 'index' in e._data: |
|
index = e._data['index'] |
|
elif 'component' in e._data and 'index' in e._data['component']: |
|
index = e._data['component']['index'] |
|
elif 'target' in e._data and 'index' in e._data['target']: |
|
index = e._data['target']['index'] |
|
else: |
|
|
|
index = 0 |
|
else: |
|
index = 0 |
|
|
|
|
|
if index >= len(DEMO_LIST): |
|
index = 0 |
|
|
|
return DEMO_LIST[index]['description'] |
|
except (KeyError, IndexError, AttributeError) as e: |
|
|
|
return DEMO_LIST[0]['description'] |
|
|
|
def generation_code(query: Optional[str], image: Optional[gr.Image], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False): |
|
if query is None: |
|
query = '' |
|
if _history is None: |
|
_history = [] |
|
|
|
|
|
system_prompt = SystemPromptWithSearch if enable_search else _setting['system'] |
|
messages = history_to_messages(_history, system_prompt) |
|
|
|
|
|
enhanced_query = enhance_query_with_search(query, enable_search) |
|
|
|
if image is not None: |
|
messages.append(create_multimodal_message(enhanced_query, image)) |
|
else: |
|
messages.append({'role': 'user', 'content': enhanced_query}) |
|
try: |
|
completion = client.chat.completions.create( |
|
model=_current_model["id"], |
|
messages=messages, |
|
stream=True, |
|
max_tokens=5000 |
|
) |
|
content = "" |
|
for chunk in completion: |
|
if chunk.choices[0].delta.content: |
|
content += chunk.choices[0].delta.content |
|
clean_code = remove_code_block(content) |
|
search_status = " (with web search)" if enable_search and tavily_client else "" |
|
yield { |
|
code_output: clean_code, |
|
status_indicator: f'<div class="status-indicator generating" id="status">Generating code{search_status}...</div>', |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
_history = messages_to_history(messages + [{ |
|
'role': 'assistant', |
|
'content': content |
|
}]) |
|
yield { |
|
code_output: remove_code_block(content), |
|
history: _history, |
|
sandbox: send_to_sandbox(remove_code_block(content)), |
|
status_indicator: '<div class="status-indicator success" id="status">Code generated successfully!</div>', |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
yield { |
|
code_output: error_message, |
|
status_indicator: '<div class="status-indicator error" id="status">Error generating code</div>', |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo: |
|
history = gr.State([]) |
|
setting = gr.State({ |
|
"system": SystemPrompt, |
|
}) |
|
current_model = gr.State(AVAILABLE_MODELS[0]) |
|
open_panel = gr.State(None) |
|
|
|
with gr.Sidebar(): |
|
gr.Markdown("# AnyCoder\nAI-Powered Code Generator") |
|
gr.Markdown("""Describe your app or UI in plain English. Optionally upload a UI image (for ERNIE model). Click Generate to get code and preview.""") |
|
gr.Markdown("**Tip:** For best search results about people or entities, include details like profession, company, or location. Example: 'John Smith software engineer at Google.'") |
|
input = gr.Textbox( |
|
label="Describe your application", |
|
placeholder="e.g., Create a todo app with add, delete, and mark as complete functionality", |
|
lines=2 |
|
) |
|
image_input = gr.Image( |
|
label="Upload UI design image (ERNIE-4.5-VL only)", |
|
visible=False |
|
) |
|
with gr.Row(): |
|
btn = gr.Button("Generate", variant="primary", size="sm") |
|
clear_btn = gr.Button("Clear", variant="secondary", size="sm") |
|
|
|
|
|
search_toggle = gr.Checkbox( |
|
label="🔍 Enable Web Search", |
|
value=False, |
|
info="Enable real-time web search to get the latest information and best practices" |
|
) |
|
|
|
|
|
if not tavily_client: |
|
gr.Markdown("⚠️ **Web Search Unavailable**: Set `TAVILY_API_KEY` environment variable to enable search") |
|
else: |
|
gr.Markdown("✅ **Web Search Available**: Toggle above to enable real-time search") |
|
|
|
gr.Markdown("### Quick Examples") |
|
for i, demo_item in enumerate(DEMO_LIST[:5]): |
|
demo_card = gr.Button( |
|
value=demo_item['title'], |
|
variant="secondary", |
|
size="sm" |
|
) |
|
demo_card.click( |
|
fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']), |
|
outputs=input |
|
) |
|
gr.Markdown("---") |
|
model_dropdown = gr.Dropdown( |
|
choices=[model['name'] for model in AVAILABLE_MODELS], |
|
value=AVAILABLE_MODELS[0]['name'], |
|
label="Select Model" |
|
) |
|
def on_model_change(model_name): |
|
for m in AVAILABLE_MODELS: |
|
if m['name'] == model_name: |
|
return m, f"**Model:** {m['name']}", update_image_input_visibility(m) |
|
return AVAILABLE_MODELS[0], f"**Model:** {AVAILABLE_MODELS[0]['name']}", update_image_input_visibility(AVAILABLE_MODELS[0]) |
|
model_display = gr.Markdown(f"**Model:** {AVAILABLE_MODELS[0]['name']}") |
|
model_dropdown.change( |
|
on_model_change, |
|
inputs=model_dropdown, |
|
outputs=[current_model, model_display, image_input] |
|
) |
|
with gr.Accordion("System Prompt", open=False): |
|
systemPromptInput = gr.Textbox( |
|
value=SystemPrompt, |
|
label="System Prompt", |
|
lines=10 |
|
) |
|
save_prompt_btn = gr.Button("Save", variant="primary") |
|
def save_prompt(input): |
|
return {setting: {"system": input}} |
|
save_prompt_btn.click(save_prompt, inputs=systemPromptInput, outputs=setting) |
|
|
|
with gr.Column(): |
|
model_display |
|
with gr.Tabs(): |
|
with gr.Tab("Code Editor"): |
|
code_output = gr.Code( |
|
language="html", |
|
lines=25, |
|
interactive=False, |
|
label="Generated Code" |
|
) |
|
with gr.Tab("Live Preview"): |
|
sandbox = gr.HTML(label="Live Preview") |
|
with gr.Tab("History"): |
|
history_output = gr.Chatbot(show_label=False, height=400, type="messages") |
|
status_indicator = gr.Markdown( |
|
'Ready to generate code', |
|
) |
|
|
|
|
|
btn.click( |
|
generation_code, |
|
inputs=[input, image_input, setting, history, current_model, search_toggle], |
|
outputs=[code_output, history, sandbox, status_indicator, history_output] |
|
) |
|
clear_btn.click(clear_history, outputs=[history, history_output]) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(default_concurrency_limit=20).launch(ssr_mode=True, mcp_server=True) |