|
import os |
|
import re |
|
from http import HTTPStatus |
|
from typing import Dict, List, Optional, Tuple |
|
import base64 |
|
import mimetypes |
|
import PyPDF2 |
|
import docx |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
import pytesseract |
|
import requests |
|
from urllib.parse import urlparse, urljoin |
|
from bs4 import BeautifulSoup |
|
import html2text |
|
import json |
|
import time |
|
import webbrowser |
|
import urllib.parse |
|
import copy |
|
import html |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from tavily import TavilyClient |
|
from huggingface_hub import HfApi |
|
import tempfile |
|
from openai import OpenAI |
|
from mistralai import Mistral |
|
|
|
|
|
GRADIO_SUPPORTED_LANGUAGES = [ |
|
"python", "c", "cpp", "markdown", "latex", "json", "html", "css", "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell", "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite", "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql", "sql-gpSQL", "sql-sparkSQL", "sql-esper", None |
|
] |
|
|
|
def get_gradio_language(language): |
|
return language if language in GRADIO_SUPPORTED_LANGUAGES else None |
|
|
|
|
|
SEARCH_START = "<<<<<<< SEARCH" |
|
DIVIDER = "=======" |
|
REPLACE_END = ">>>>>>> REPLACE" |
|
|
|
|
|
HTML_SYSTEM_PROMPT = """ONLY USE HTML, CSS AND JAVASCRIPT. If you want to use ICON make sure to import the library first. Try to create the best UI possible by using only HTML, CSS and JAVASCRIPT. MAKE IT RESPONSIVE USING MODERN CSS. Use as much as you can modern CSS for the styling, if you can't do something with modern CSS, then use custom CSS. Also, try to elaborate as much as you can, to create something unique. ALWAYS GIVE THE RESPONSE INTO A SINGLE HTML FILE |
|
|
|
For website redesign tasks: |
|
- Use the provided original HTML code as the starting point for redesign |
|
- Preserve all original content, structure, and functionality |
|
- Keep the same semantic HTML structure but enhance the styling |
|
- Reuse all original images and their URLs from the HTML code |
|
- Create a modern, responsive design with improved typography and spacing |
|
- Use modern CSS frameworks and design patterns |
|
- Ensure accessibility and mobile responsiveness |
|
- Maintain the same navigation and user flow |
|
- Enhance the visual design while keeping the original layout structure |
|
|
|
If an image is provided, analyze it and use the visual information to better understand the user's requirements. |
|
|
|
Always respond with code that can be executed or rendered directly. |
|
|
|
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text. Do NOT add the language name at the top of the code output.""" |
|
|
|
TRANSFORMERS_JS_SYSTEM_PROMPT = """You are an expert web developer creating a transformers.js application. You will generate THREE separate files: index.html, index.js, and style.css. |
|
|
|
IMPORTANT: You MUST output ALL THREE files in the following format: |
|
|
|
```html |
|
<!-- index.html content here --> |
|
``` |
|
|
|
```javascript |
|
// index.js content here |
|
``` |
|
|
|
```css |
|
/* style.css content here */ |
|
``` |
|
|
|
Requirements: |
|
1. Create a modern, responsive web application using transformers.js |
|
2. Use the transformers.js library for AI/ML functionality |
|
3. Create a clean, professional UI with good user experience |
|
4. Make the application fully responsive for mobile devices |
|
5. Use modern CSS practices and JavaScript ES6+ features |
|
6. Include proper error handling and loading states |
|
7. Follow accessibility best practices |
|
|
|
The index.html should contain the basic HTML structure and link to the CSS and JS files. |
|
The index.js should contain all the JavaScript logic including transformers.js integration. |
|
The style.css should contain all the styling for the application. |
|
|
|
Always output only the three code blocks as shown above, and do not include any explanations or extra text.""" |
|
|
|
SVELTE_SYSTEM_PROMPT = """You are an expert Svelte developer creating a modern Svelte application. You will generate ONLY the custom files that need user-specific content for the user's requested application. |
|
|
|
IMPORTANT: You MUST output files in the following format. Generate ONLY the files needed for the user's specific request: |
|
|
|
```svelte |
|
<!-- src/App.svelte content here --> |
|
``` |
|
|
|
```css |
|
/* src/app.css content here */ |
|
``` |
|
|
|
If you need additional components for the user's specific app, add them like: |
|
```svelte |
|
<!-- src/lib/ComponentName.svelte content here --> |
|
``` |
|
|
|
Requirements: |
|
1. Create a modern, responsive Svelte application based on the user's specific request |
|
2. Use TypeScript for better type safety |
|
3. Create a clean, professional UI with good user experience |
|
4. Make the application fully responsive for mobile devices |
|
5. Use modern CSS practices and Svelte best practices |
|
6. Include proper error handling and loading states |
|
7. Follow accessibility best practices |
|
8. Use Svelte's reactive features effectively |
|
9. Include proper component structure and organization |
|
10. Generate ONLY components that are actually needed for the user's requested application |
|
|
|
Files you should generate: |
|
- src/App.svelte: Main application component (ALWAYS required) |
|
- src/app.css: Global styles (ALWAYS required) |
|
- src/lib/[ComponentName].svelte: Additional components (ONLY if needed for the user's specific app) |
|
|
|
The other files (index.html, package.json, vite.config.ts, tsconfig files, svelte.config.js, src/main.ts, src/vite-env.d.ts) are provided by the Svelte template and don't need to be generated. |
|
|
|
Always output only the two code blocks as shown above, and do not include any explanations or extra text.""" |
|
|
|
SVELTE_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert Svelte developer creating a modern Svelte application. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific Svelte technologies. |
|
|
|
You will generate ONLY the custom files that need user-specific content. |
|
|
|
IMPORTANT: You MUST output ONLY the custom files in the following format: |
|
|
|
```svelte |
|
<!-- src/App.svelte content here --> |
|
``` |
|
|
|
```css |
|
/* src/app.css content here --> |
|
``` |
|
|
|
Requirements: |
|
1. Create a modern, responsive Svelte application |
|
2. Use TypeScript for better type safety |
|
3. Create a clean, professional UI with good user experience |
|
4. Make the application fully responsive for mobile devices |
|
5. Use modern CSS practices and Svelte best practices |
|
6. Include proper error handling and loading states |
|
7. Follow accessibility best practices |
|
8. Use Svelte's reactive features effectively |
|
9. Include proper component structure and organization |
|
10. Use web search to find the latest Svelte patterns, libraries, and best practices |
|
|
|
The files you generate are: |
|
- src/App.svelte: Main application component (your custom app logic) |
|
- src/app.css: Global styles (your custom styling) |
|
|
|
The other files (index.html, package.json, vite.config.ts, tsconfig files, svelte.config.js, src/main.ts, src/vite-env.d.ts) are provided by the Svelte template and don't need to be generated. |
|
|
|
Always output only the two code blocks as shown above, and do not include any explanations or extra text.""" |
|
|
|
TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert web developer creating a transformers.js application. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific technologies for transformers.js. |
|
|
|
You will generate THREE separate files: index.html, index.js, and style.css. |
|
|
|
IMPORTANT: You MUST output ALL THREE files in the following format: |
|
|
|
```html |
|
<!-- index.html content here --> |
|
``` |
|
|
|
```javascript |
|
// index.js content here |
|
``` |
|
|
|
```css |
|
/* style.css content here */ |
|
``` |
|
|
|
Requirements: |
|
1. Create a modern, responsive web application using transformers.js |
|
2. Use the transformers.js library for AI/ML functionality |
|
3. Use web search to find current best practices and latest transformers.js features |
|
4. Create a clean, professional UI with good user experience |
|
5. Make the application fully responsive for mobile devices |
|
6. Use modern CSS practices and JavaScript ES6+ features |
|
7. Include proper error handling and loading states |
|
8. Follow accessibility best practices |
|
|
|
The index.html should contain the basic HTML structure and link to the CSS and JS files. |
|
The index.js should contain all the JavaScript logic including transformers.js integration. |
|
The style.css should contain all the styling for the application. |
|
|
|
Always output only the three code blocks as shown above, and do not include any explanations or extra text.""" |
|
|
|
GENERIC_SYSTEM_PROMPT = """You are an expert {language} developer. Write clean, idiomatic, and runnable {language} code for the user's request. If possible, include comments and best practices. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. If the code is for a script or app, make it as self-contained as possible. Do NOT add the language name at the top of the code output.""" |
|
|
|
|
|
HTML_SYSTEM_PROMPT_WITH_SEARCH = """ONLY USE HTML, CSS AND JAVASCRIPT. If you want to use ICON make sure to import the library first. Try to create the best UI possible by using only HTML, CSS and JAVASCRIPT. MAKE IT RESPONSIVE USING MODERN CSS. Use as much as you can modern CSS for the styling, if you can't do something with modern CSS, then use custom CSS. Also, try to elaborate as much as you can, to create something unique. ALWAYS GIVE THE RESPONSE INTO A SINGLE HTML FILE |
|
|
|
You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific technologies. |
|
|
|
For website redesign tasks: |
|
- Use the provided original HTML code as the starting point for redesign |
|
- Preserve all original content, structure, and functionality |
|
- Keep the same semantic HTML structure but enhance the styling |
|
- Reuse all original images and their URLs from the HTML code |
|
- Use web search to find current design trends and best practices for the specific type of website |
|
- Create a modern, responsive design with improved typography and spacing |
|
- Use modern CSS frameworks and design patterns |
|
- Ensure accessibility and mobile responsiveness |
|
- Maintain the same navigation and user flow |
|
- Enhance the visual design while keeping the original layout structure |
|
|
|
If an image is provided, analyze it and use the visual information to better understand the user's requirements. |
|
|
|
Always respond with code that can be executed or rendered directly. |
|
|
|
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text. Do NOT add the language name at the top of the code output.""" |
|
|
|
GENERIC_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert {language} developer. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific technologies for {language}. |
|
|
|
Write clean, idiomatic, and runnable {language} code for the user's request. If possible, include comments and best practices. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. If the code is for a script or app, make it as self-contained as possible. Do NOT add the language name at the top of the code output.""" |
|
|
|
|
|
FollowUpSystemPrompt = f"""You are an expert web developer modifying an existing project. |
|
The user wants to apply changes based on their request. |
|
You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file. |
|
Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks. |
|
|
|
IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing: |
|
- ImportError/ModuleNotFoundError → Fix requirements.txt by adding missing packages |
|
- Syntax errors in Python code → Fix app.py or the main Python file |
|
- HTML/CSS/JavaScript errors → Fix the respective HTML/CSS/JS files |
|
- Configuration errors → Fix config files, Docker files, etc. |
|
|
|
For Python applications (Gradio/Streamlit), the project structure typically includes: |
|
- app.py (main application file) |
|
- requirements.txt (dependencies) |
|
- Other supporting files as needed |
|
|
|
Format Rules: |
|
1. Start with {SEARCH_START} |
|
2. Provide the exact lines from the current code that need to be replaced. |
|
3. Use {DIVIDER} to separate the search block from the replacement. |
|
4. Provide the new lines that should replace the original lines. |
|
5. End with {REPLACE_END} |
|
6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file. |
|
7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block. |
|
8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines). |
|
9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace. |
|
10. For multi-file projects, specify which file you're modifying by starting with the filename before the search/replace block. |
|
|
|
Example Modifying Code: |
|
``` |
|
Some explanation... |
|
{SEARCH_START} |
|
<h1>Old Title</h1> |
|
{DIVIDER} |
|
<h1>New Title</h1> |
|
{REPLACE_END} |
|
{SEARCH_START} |
|
</body> |
|
{DIVIDER} |
|
<script>console.log("Added script");</script> |
|
</body> |
|
{REPLACE_END} |
|
``` |
|
|
|
Example Fixing Dependencies (requirements.txt): |
|
``` |
|
Adding missing dependency to fix ImportError... |
|
=== requirements.txt === |
|
{SEARCH_START} |
|
gradio |
|
streamlit |
|
{DIVIDER} |
|
gradio |
|
streamlit |
|
mistral-common |
|
{REPLACE_END} |
|
``` |
|
|
|
Example Deleting Code: |
|
``` |
|
Removing the paragraph... |
|
{SEARCH_START} |
|
<p>This paragraph will be deleted.</p> |
|
{DIVIDER} |
|
{REPLACE_END} |
|
```""" |
|
|
|
|
|
TransformersJSFollowUpSystemPrompt = f"""You are an expert web developer modifying an existing transformers.js application. |
|
The user wants to apply changes based on their request. |
|
You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file. |
|
Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks. |
|
|
|
IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing: |
|
- JavaScript errors/module loading issues → Fix index.js |
|
- HTML rendering/DOM issues → Fix index.html |
|
- Styling/visual issues → Fix style.css |
|
- CDN/library loading errors → Fix script tags in index.html |
|
|
|
The transformers.js application consists of three files: index.html, index.js, and style.css. |
|
When making changes, specify which file you're modifying by starting your search/replace blocks with the file name. |
|
|
|
Format Rules: |
|
1. Start with {SEARCH_START} |
|
2. Provide the exact lines from the current code that need to be replaced. |
|
3. Use {DIVIDER} to separate the search block from the replacement. |
|
4. Provide the new lines that should replace the original lines. |
|
5. End with {REPLACE_END} |
|
6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file. |
|
7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block. |
|
8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines). |
|
9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace. |
|
|
|
Example Modifying HTML: |
|
``` |
|
Changing the title in index.html... |
|
=== index.html === |
|
{SEARCH_START} |
|
<title>Old Title</title> |
|
{DIVIDER} |
|
<title>New Title</title> |
|
{REPLACE_END} |
|
``` |
|
|
|
Example Modifying JavaScript: |
|
``` |
|
Adding a new function to index.js... |
|
=== index.js === |
|
{SEARCH_START} |
|
// Existing code |
|
{DIVIDER} |
|
// Existing code |
|
|
|
function newFunction() {{ |
|
console.log("New function added"); |
|
}} |
|
{REPLACE_END} |
|
``` |
|
|
|
Example Modifying CSS: |
|
``` |
|
Changing background color in style.css... |
|
=== style.css === |
|
{SEARCH_START} |
|
body {{ |
|
background-color: white; |
|
}} |
|
{DIVIDER} |
|
body {{ |
|
background-color: #f0f0f0; |
|
}} |
|
{REPLACE_END} |
|
``` |
|
|
|
Example Fixing Library Loading Error: |
|
``` |
|
Fixing transformers.js CDN loading error... |
|
=== index.html === |
|
{SEARCH_START} |
|
<script type="module" src="https://cdn.jsdelivr.net/npm/@xenova/[email protected]"></script> |
|
{DIVIDER} |
|
<script type="module" src="https://cdn.jsdelivr.net/npm/@xenova/[email protected]"></script> |
|
{REPLACE_END} |
|
```""" |
|
|
|
|
|
AVAILABLE_MODELS = [ |
|
{ |
|
"name": "Moonshot Kimi-K2", |
|
"id": "moonshotai/Kimi-K2-Instruct", |
|
"description": "Moonshot AI Kimi-K2-Instruct model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "DeepSeek V3", |
|
"id": "deepseek-ai/DeepSeek-V3-0324", |
|
"description": "DeepSeek V3 model for code generation" |
|
}, |
|
{ |
|
"name": "DeepSeek R1", |
|
"id": "deepseek-ai/DeepSeek-R1-0528", |
|
"description": "DeepSeek R1 model for code generation" |
|
}, |
|
{ |
|
"name": "ERNIE-4.5-VL", |
|
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", |
|
"description": "ERNIE-4.5-VL model for multimodal code generation with image support" |
|
}, |
|
{ |
|
"name": "MiniMax M1", |
|
"id": "MiniMaxAI/MiniMax-M1-80k", |
|
"description": "MiniMax M1 model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "Qwen3-235B-A22B", |
|
"id": "Qwen/Qwen3-235B-A22B", |
|
"description": "Qwen3-235B-A22B model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "SmolLM3-3B", |
|
"id": "HuggingFaceTB/SmolLM3-3B", |
|
"description": "SmolLM3-3B model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "GLM-4.5", |
|
"id": "GLM-4.5", |
|
"description": "GLM-4.5 model with thinking capabilities for advanced code generation" |
|
}, |
|
{ |
|
"name": "GLM-4.1V-9B-Thinking", |
|
"id": "THUDM/GLM-4.1V-9B-Thinking", |
|
"description": "GLM-4.1V-9B-Thinking model for multimodal code generation with image support" |
|
}, |
|
{ |
|
"name": "Qwen3-235B-A22B-Instruct-2507", |
|
"id": "Qwen/Qwen3-235B-A22B-Instruct-2507", |
|
"description": "Qwen3-235B-A22B-Instruct-2507 model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "Qwen3-Coder-480B-A35B-Instruct", |
|
"id": "Qwen/Qwen3-Coder-480B-A35B-Instruct", |
|
"description": "Qwen3-Coder-480B-A35B-Instruct model for advanced code generation and programming tasks" |
|
}, |
|
{ |
|
"name": "Qwen3-32B", |
|
"id": "Qwen/Qwen3-32B", |
|
"description": "Qwen3-32B model for code generation and general tasks" |
|
}, |
|
{ |
|
"name": "Qwen3-235B-A22B-Thinking", |
|
"id": "Qwen/Qwen3-235B-A22B-Thinking-2507", |
|
"description": "Qwen3-235B-A22B-Thinking model with advanced reasoning capabilities" |
|
}, |
|
{ |
|
"name": "Qwen3-30B-A3B-Instruct-2507", |
|
"id": "qwen3-30b-a3b-instruct-2507", |
|
"description": "Qwen3-30B-A3B-Instruct model via Alibaba Cloud DashScope API" |
|
}, |
|
{ |
|
"name": "Qwen3-30B-A3B-Thinking-2507", |
|
"id": "qwen3-30b-a3b-thinking-2507", |
|
"description": "Qwen3-30B-A3B-Thinking model with advanced reasoning via Alibaba Cloud DashScope API" |
|
}, |
|
{ |
|
"name": "Qwen3-Coder-30B-A3B-Instruct", |
|
"id": "qwen3-coder-30b-a3b-instruct", |
|
"description": "Qwen3-Coder-30B-A3B-Instruct model for advanced code generation via Alibaba Cloud DashScope API" |
|
}, |
|
{ |
|
"name": "Horizon Alpha", |
|
"id": "openrouter/horizon-alpha", |
|
"description": "OpenRouter Horizon Alpha model for advanced code generation and multimodal tasks" |
|
}, |
|
{ |
|
"name": "Horizon Beta", |
|
"id": "openrouter/horizon-beta", |
|
"description": "OpenRouter Horizon Beta model for advanced code generation and multimodal tasks with vision support" |
|
}, |
|
{ |
|
"name": "StepFun Step-3", |
|
"id": "step-3", |
|
"description": "StepFun Step-3 model - AI chat assistant by 阶跃星辰 with multilingual capabilities" |
|
}, |
|
{ |
|
"name": "Codestral 2508", |
|
"id": "codestral-2508", |
|
"description": "Mistral Codestral model - specialized for code generation and programming tasks" |
|
} |
|
] |
|
|
|
DEMO_LIST = [ |
|
{ |
|
"title": "Todo App", |
|
"description": "Create a simple todo application with add, delete, and mark as complete functionality" |
|
}, |
|
{ |
|
"title": "Calculator", |
|
"description": "Build a basic calculator with addition, subtraction, multiplication, and division" |
|
}, |
|
{ |
|
"title": "Chat Interface", |
|
"description": "Build a chat interface with message history and user input" |
|
}, |
|
{ |
|
"title": "E-commerce Product Card", |
|
"description": "Create a product card component for an e-commerce website" |
|
}, |
|
{ |
|
"title": "Login Form", |
|
"description": "Build a responsive login form with validation" |
|
}, |
|
{ |
|
"title": "Dashboard Layout", |
|
"description": "Create a dashboard layout with sidebar navigation and main content area" |
|
}, |
|
{ |
|
"title": "Data Table", |
|
"description": "Build a data table with sorting and filtering capabilities" |
|
}, |
|
{ |
|
"title": "Image Gallery", |
|
"description": "Create an image gallery with lightbox functionality and responsive grid layout" |
|
}, |
|
{ |
|
"title": "UI from Image", |
|
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" |
|
}, |
|
{ |
|
"title": "Extract Text from Image", |
|
"description": "Upload an image containing text and I'll extract and process the text content" |
|
}, |
|
{ |
|
"title": "Website Redesign", |
|
"description": "Enter a website URL to extract its content and redesign it with a modern, responsive layout" |
|
}, |
|
{ |
|
"title": "Modify HTML", |
|
"description": "After generating HTML, ask me to modify it with specific changes using search/replace format" |
|
}, |
|
{ |
|
"title": "Search/Replace Example", |
|
"description": "Generate HTML first, then ask: 'Change the title to My New Title' or 'Add a blue background to the body'" |
|
}, |
|
{ |
|
"title": "Transformers.js App", |
|
"description": "Create a transformers.js application with AI/ML functionality using the transformers.js library" |
|
}, |
|
{ |
|
"title": "Svelte App", |
|
"description": "Create a modern Svelte application with TypeScript, Vite, and responsive design" |
|
} |
|
] |
|
|
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
if not HF_TOKEN: |
|
raise RuntimeError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token.") |
|
|
|
def get_inference_client(model_id, provider="auto"): |
|
"""Return an InferenceClient with provider based on model_id and user selection.""" |
|
if model_id == "qwen3-30b-a3b-instruct-2507": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("DASHSCOPE_API_KEY"), |
|
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", |
|
) |
|
elif model_id == "qwen3-30b-a3b-thinking-2507": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("DASHSCOPE_API_KEY"), |
|
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", |
|
) |
|
elif model_id == "qwen3-coder-30b-a3b-instruct": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("DASHSCOPE_API_KEY"), |
|
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", |
|
) |
|
elif model_id == "openrouter/horizon-alpha": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("OPENROUTER_API_KEY"), |
|
base_url="https://openrouter.ai/api/v1", |
|
default_headers={ |
|
"HTTP-Referer": os.getenv("OPENROUTER_SITE_URL", "https://huggingface.co/spaces/akhaliq/anycoder"), |
|
"X-Title": os.getenv("OPENROUTER_SITE_NAME", "AnyCoder") |
|
} |
|
) |
|
elif model_id == "openrouter/horizon-beta": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("OPENROUTER_API_KEY"), |
|
base_url="https://openrouter.ai/api/v1", |
|
default_headers={ |
|
"HTTP-Referer": os.getenv("OPENROUTER_SITE_URL", "https://huggingface.co/spaces/akhaliq/anycoder"), |
|
"X-Title": os.getenv("OPENROUTER_SITE_NAME", "AnyCoder") |
|
} |
|
) |
|
elif model_id == "step-3": |
|
|
|
return OpenAI( |
|
api_key=os.getenv("STEP_API_KEY"), |
|
base_url="https://api.stepfun.com/v1" |
|
) |
|
elif model_id == "codestral-2508": |
|
|
|
return Mistral(api_key=os.getenv("MISTRAL_API_KEY")) |
|
elif model_id == "moonshotai/Kimi-K2-Instruct": |
|
provider = "groq" |
|
elif model_id == "Qwen/Qwen3-235B-A22B": |
|
provider = "cerebras" |
|
elif model_id == "Qwen/Qwen3-235B-A22B-Instruct-2507": |
|
provider = "cerebras" |
|
elif model_id == "Qwen/Qwen3-32B": |
|
provider = "cerebras" |
|
elif model_id == "Qwen/Qwen3-235B-A22B-Thinking-2507": |
|
provider = "cerebras" |
|
elif model_id == "Qwen/Qwen3-Coder-480B-A35B-Instruct": |
|
provider = "cerebras" |
|
return InferenceClient( |
|
provider=provider, |
|
api_key=HF_TOKEN, |
|
bill_to="huggingface" |
|
) |
|
|
|
|
|
History = List[Tuple[str, str]] |
|
Messages = List[Dict[str, str]] |
|
|
|
|
|
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') |
|
tavily_client = None |
|
if TAVILY_API_KEY: |
|
try: |
|
tavily_client = TavilyClient(api_key=TAVILY_API_KEY) |
|
except Exception as e: |
|
print(f"Failed to initialize Tavily client: {e}") |
|
tavily_client = None |
|
|
|
def history_to_messages(history: History, system: str) -> Messages: |
|
messages = [{'role': 'system', 'content': system}] |
|
for h in history: |
|
|
|
user_content = h[0] |
|
if isinstance(user_content, list): |
|
|
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
messages.append({'role': 'user', 'content': user_content}) |
|
messages.append({'role': 'assistant', 'content': h[1]}) |
|
return messages |
|
|
|
def messages_to_history(messages: Messages) -> Tuple[str, History]: |
|
assert messages[0]['role'] == 'system' |
|
history = [] |
|
for q, r in zip(messages[1::2], messages[2::2]): |
|
|
|
user_content = q['content'] |
|
if isinstance(user_content, list): |
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
history.append([user_content, r['content']]) |
|
return history |
|
|
|
def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: |
|
"""Convert history tuples to chatbot message format""" |
|
messages = [] |
|
for user_msg, assistant_msg in history: |
|
|
|
if isinstance(user_msg, list): |
|
text_content = "" |
|
for item in user_msg: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_msg = text_content if text_content else str(user_msg) |
|
|
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
return messages |
|
|
|
def remove_code_block(text): |
|
|
|
patterns = [ |
|
r'```(?:html|HTML)\n([\s\S]+?)\n```', |
|
r'```\n([\s\S]+?)\n```', |
|
r'```([\s\S]+?)```' |
|
] |
|
for pattern in patterns: |
|
match = re.search(pattern, text, re.DOTALL) |
|
if match: |
|
extracted = match.group(1).strip() |
|
|
|
if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']: |
|
return extracted.split('\n', 1)[1] if '\n' in extracted else '' |
|
return extracted |
|
|
|
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'): |
|
return text.strip() |
|
|
|
if text.strip().startswith('```python'): |
|
return text.strip()[9:-3].strip() |
|
|
|
lines = text.strip().split('\n', 1) |
|
if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']: |
|
return lines[1] if len(lines) > 1 else '' |
|
return text.strip() |
|
|
|
def parse_transformers_js_output(text): |
|
"""Parse transformers.js output and extract the three files (index.html, index.js, style.css)""" |
|
files = { |
|
'index.html': '', |
|
'index.js': '', |
|
'style.css': '' |
|
} |
|
|
|
|
|
html_pattern = r'```html\s*\n([\s\S]+?)\n```' |
|
js_pattern = r'```javascript\s*\n([\s\S]+?)\n```' |
|
css_pattern = r'```css\s*\n([\s\S]+?)\n```' |
|
|
|
|
|
html_match = re.search(html_pattern, text, re.IGNORECASE) |
|
if html_match: |
|
files['index.html'] = html_match.group(1).strip() |
|
|
|
|
|
js_match = re.search(js_pattern, text, re.IGNORECASE) |
|
if js_match: |
|
files['index.js'] = js_match.group(1).strip() |
|
|
|
|
|
css_match = re.search(css_pattern, text, re.IGNORECASE) |
|
if css_match: |
|
files['style.css'] = css_match.group(1).strip() |
|
|
|
|
|
if not (files['index.html'] and files['index.js'] and files['style.css']): |
|
|
|
html_fallback = re.search(r'===\s*index\.html\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) |
|
js_fallback = re.search(r'===\s*index\.js\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) |
|
css_fallback = re.search(r'===\s*style\.css\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) |
|
if html_fallback: |
|
files['index.html'] = html_fallback.group(1).strip() |
|
if js_fallback: |
|
files['index.js'] = js_fallback.group(1).strip() |
|
if css_fallback: |
|
files['style.css'] = css_fallback.group(1).strip() |
|
|
|
return files |
|
|
|
def format_transformers_js_output(files): |
|
"""Format the three files into a single display string""" |
|
output = [] |
|
output.append("=== index.html ===") |
|
output.append(files['index.html']) |
|
output.append("\n=== index.js ===") |
|
output.append(files['index.js']) |
|
output.append("\n=== style.css ===") |
|
output.append(files['style.css']) |
|
return '\n'.join(output) |
|
|
|
def parse_svelte_output(text): |
|
"""Parse Svelte output to extract individual files""" |
|
files = { |
|
'src/App.svelte': '', |
|
'src/app.css': '' |
|
} |
|
|
|
import re |
|
|
|
|
|
svelte_pattern = r'```svelte\s*\n([\s\S]+?)\n```' |
|
css_pattern = r'```css\s*\n([\s\S]+?)\n```' |
|
|
|
|
|
svelte_match = re.search(svelte_pattern, text, re.IGNORECASE) |
|
css_match = re.search(css_pattern, text, re.IGNORECASE) |
|
|
|
if svelte_match: |
|
files['src/App.svelte'] = svelte_match.group(1).strip() |
|
if css_match: |
|
files['src/app.css'] = css_match.group(1).strip() |
|
|
|
|
|
if not (files['src/App.svelte'] and files['src/app.css']): |
|
|
|
app_svelte_fallback = re.search(r'===\s*src/App\.svelte\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) |
|
app_css_fallback = re.search(r'===\s*src/app\.css\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) |
|
|
|
if app_svelte_fallback: |
|
files['src/App.svelte'] = app_svelte_fallback.group(1).strip() |
|
if app_css_fallback: |
|
files['src/app.css'] = app_css_fallback.group(1).strip() |
|
|
|
return files |
|
|
|
def format_svelte_output(files): |
|
"""Format Svelte files into a single display string""" |
|
output = [] |
|
output.append("=== src/App.svelte ===") |
|
output.append(files['src/App.svelte']) |
|
output.append("\n=== src/app.css ===") |
|
output.append(files['src/app.css']) |
|
return '\n'.join(output) |
|
|
|
def history_render(history: History): |
|
return gr.update(visible=True), history |
|
|
|
def clear_history(): |
|
return [], [], None, "" |
|
|
|
def update_image_input_visibility(model): |
|
"""Update image input visibility based on selected model""" |
|
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" |
|
is_glm_vl = model.get("id") == "THUDM/GLM-4.1V-9B-Thinking" |
|
return gr.update(visible=is_ernie_vl or is_glm_vl) |
|
|
|
def process_image_for_model(image): |
|
"""Convert image to base64 for model input""" |
|
if image is None: |
|
return None |
|
|
|
|
|
import io |
|
import base64 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
|
|
buffer = io.BytesIO() |
|
image.save(buffer, format='PNG') |
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
return f"data:image/png;base64,{img_str}" |
|
|
|
def create_multimodal_message(text, image=None): |
|
"""Create a multimodal message with text and optional image""" |
|
if image is None: |
|
return {"role": "user", "content": text} |
|
|
|
content = [ |
|
{ |
|
"type": "text", |
|
"text": text |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": process_image_for_model(image) |
|
} |
|
} |
|
] |
|
|
|
return {"role": "user", "content": content} |
|
|
|
def apply_search_replace_changes(original_content: str, changes_text: str) -> str: |
|
"""Apply search/replace changes to content (HTML, Python, etc.)""" |
|
if not changes_text.strip(): |
|
return original_content |
|
|
|
|
|
blocks = [] |
|
current_block = "" |
|
lines = changes_text.split('\n') |
|
|
|
for line in lines: |
|
if line.strip() == SEARCH_START: |
|
if current_block.strip(): |
|
blocks.append(current_block.strip()) |
|
current_block = line + '\n' |
|
elif line.strip() == REPLACE_END: |
|
current_block += line + '\n' |
|
blocks.append(current_block.strip()) |
|
current_block = "" |
|
else: |
|
current_block += line + '\n' |
|
|
|
if current_block.strip(): |
|
blocks.append(current_block.strip()) |
|
|
|
modified_content = original_content |
|
|
|
for block in blocks: |
|
if not block.strip(): |
|
continue |
|
|
|
|
|
lines = block.split('\n') |
|
search_lines = [] |
|
replace_lines = [] |
|
in_search = False |
|
in_replace = False |
|
|
|
for line in lines: |
|
if line.strip() == SEARCH_START: |
|
in_search = True |
|
in_replace = False |
|
elif line.strip() == DIVIDER: |
|
in_search = False |
|
in_replace = True |
|
elif line.strip() == REPLACE_END: |
|
in_replace = False |
|
elif in_search: |
|
search_lines.append(line) |
|
elif in_replace: |
|
replace_lines.append(line) |
|
|
|
|
|
if search_lines: |
|
search_text = '\n'.join(search_lines).strip() |
|
replace_text = '\n'.join(replace_lines).strip() |
|
|
|
if search_text in modified_content: |
|
modified_content = modified_content.replace(search_text, replace_text) |
|
else: |
|
print(f"Warning: Search text not found in content: {search_text[:100]}...") |
|
|
|
return modified_content |
|
|
|
def apply_transformers_js_search_replace_changes(original_formatted_content: str, changes_text: str) -> str: |
|
"""Apply search/replace changes to transformers.js formatted content (three files)""" |
|
if not changes_text.strip(): |
|
return original_formatted_content |
|
|
|
|
|
files = parse_transformers_js_output(original_formatted_content) |
|
|
|
|
|
blocks = [] |
|
current_block = "" |
|
lines = changes_text.split('\n') |
|
|
|
for line in lines: |
|
if line.strip() == SEARCH_START: |
|
if current_block.strip(): |
|
blocks.append(current_block.strip()) |
|
current_block = line + '\n' |
|
elif line.strip() == REPLACE_END: |
|
current_block += line + '\n' |
|
blocks.append(current_block.strip()) |
|
current_block = "" |
|
else: |
|
current_block += line + '\n' |
|
|
|
if current_block.strip(): |
|
blocks.append(current_block.strip()) |
|
|
|
|
|
for block in blocks: |
|
if not block.strip(): |
|
continue |
|
|
|
|
|
lines = block.split('\n') |
|
search_lines = [] |
|
replace_lines = [] |
|
in_search = False |
|
in_replace = False |
|
target_file = None |
|
|
|
for line in lines: |
|
if line.strip() == SEARCH_START: |
|
in_search = True |
|
in_replace = False |
|
elif line.strip() == DIVIDER: |
|
in_search = False |
|
in_replace = True |
|
elif line.strip() == REPLACE_END: |
|
in_replace = False |
|
elif in_search: |
|
search_lines.append(line) |
|
elif in_replace: |
|
replace_lines.append(line) |
|
|
|
|
|
if search_lines: |
|
search_text = '\n'.join(search_lines).strip() |
|
replace_text = '\n'.join(replace_lines).strip() |
|
|
|
|
|
if search_text in files['index.html']: |
|
target_file = 'index.html' |
|
elif search_text in files['index.js']: |
|
target_file = 'index.js' |
|
elif search_text in files['style.css']: |
|
target_file = 'style.css' |
|
|
|
|
|
if target_file and search_text in files[target_file]: |
|
files[target_file] = files[target_file].replace(search_text, replace_text) |
|
else: |
|
print(f"Warning: Search text not found in any transformers.js file: {search_text[:100]}...") |
|
|
|
|
|
return format_transformers_js_output(files) |
|
|
|
|
|
|
|
|
|
def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str: |
|
"""Perform web search using Tavily with default parameters""" |
|
if not tavily_client: |
|
return "Web search is not available. Please set the TAVILY_API_KEY environment variable." |
|
|
|
try: |
|
|
|
search_params = { |
|
"search_depth": "advanced", |
|
"max_results": min(max(1, max_results), 20) |
|
} |
|
if include_domains is not None: |
|
search_params["include_domains"] = include_domains |
|
if exclude_domains is not None: |
|
search_params["exclude_domains"] = exclude_domains |
|
|
|
response = tavily_client.search(query, **search_params) |
|
|
|
search_results = [] |
|
for result in response.get('results', []): |
|
title = result.get('title', 'No title') |
|
url = result.get('url', 'No URL') |
|
content = result.get('content', 'No content') |
|
search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n") |
|
|
|
if search_results: |
|
return "Web Search Results:\n\n" + "\n---\n".join(search_results) |
|
else: |
|
return "No search results found." |
|
|
|
except Exception as e: |
|
return f"Search error: {str(e)}" |
|
|
|
def enhance_query_with_search(query: str, enable_search: bool) -> str: |
|
"""Enhance the query with web search results if search is enabled""" |
|
if not enable_search or not tavily_client: |
|
return query |
|
|
|
|
|
search_results = perform_web_search(query) |
|
|
|
|
|
enhanced_query = f"""Original Query: {query} |
|
|
|
{search_results} |
|
|
|
Please use the search results above to help create the requested application with the most up-to-date information and best practices.""" |
|
|
|
return enhanced_query |
|
|
|
def send_to_sandbox(code): |
|
|
|
wrapped_code = f""" |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta charset=\"UTF-8\"> |
|
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> |
|
<script> |
|
// Safe localStorage polyfill |
|
const safeStorage = {{ |
|
_data: {{}}, |
|
getItem: function(key) {{ return this._data[key] || null; }}, |
|
setItem: function(key, value) {{ this._data[key] = value; }}, |
|
removeItem: function(key) {{ delete this._data[key]; }}, |
|
clear: function() {{ this._data = {{}}; }} |
|
}}; |
|
Object.defineProperty(window, 'localStorage', {{ |
|
value: safeStorage, |
|
writable: false |
|
}}); |
|
window.onerror = function(message, source, lineno, colno, error) {{ |
|
console.error('Error:', message); |
|
}}; |
|
</script> |
|
</head> |
|
<body> |
|
{code} |
|
</body> |
|
</html> |
|
""" |
|
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') |
|
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" |
|
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' |
|
return iframe |
|
|
|
def demo_card_click(e: gr.EventData): |
|
try: |
|
|
|
if hasattr(e, '_data') and e._data: |
|
|
|
if 'index' in e._data: |
|
index = e._data['index'] |
|
elif 'component' in e._data and 'index' in e._data['component']: |
|
index = e._data['component']['index'] |
|
elif 'target' in e._data and 'index' in e._data['target']: |
|
index = e._data['target']['index'] |
|
else: |
|
|
|
index = 0 |
|
else: |
|
index = 0 |
|
|
|
|
|
if index >= len(DEMO_LIST): |
|
index = 0 |
|
|
|
return DEMO_LIST[index]['description'] |
|
except (KeyError, IndexError, AttributeError) as e: |
|
|
|
return DEMO_LIST[0]['description'] |
|
|
|
def extract_text_from_image(image_path): |
|
"""Extract text from image using OCR""" |
|
try: |
|
|
|
try: |
|
pytesseract.get_tesseract_version() |
|
except Exception: |
|
return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images. See install_tesseract.md for instructions." |
|
|
|
|
|
image = cv2.imread(image_path) |
|
if image is None: |
|
return "Error: Could not read image file" |
|
|
|
|
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
|
|
gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY) |
|
|
|
|
|
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) |
|
|
|
|
|
text = pytesseract.image_to_string(binary, config='--psm 6') |
|
|
|
return text.strip() if text.strip() else "No text found in image" |
|
|
|
except Exception as e: |
|
return f"Error extracting text from image: {e}" |
|
|
|
def extract_text_from_file(file_path): |
|
if not file_path: |
|
return "" |
|
mime, _ = mimetypes.guess_type(file_path) |
|
ext = os.path.splitext(file_path)[1].lower() |
|
try: |
|
if ext == ".pdf": |
|
with open(file_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
return "\n".join(page.extract_text() or "" for page in reader.pages) |
|
elif ext in [".txt", ".md"]: |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
return f.read() |
|
elif ext == ".csv": |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
return f.read() |
|
elif ext == ".docx": |
|
doc = docx.Document(file_path) |
|
return "\n".join([para.text for para in doc.paragraphs]) |
|
elif ext.lower() in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]: |
|
return extract_text_from_image(file_path) |
|
else: |
|
return "" |
|
except Exception as e: |
|
return f"Error extracting text: {e}" |
|
|
|
def extract_website_content(url: str) -> str: |
|
"""Extract HTML code and content from a website URL""" |
|
try: |
|
|
|
parsed_url = urlparse(url) |
|
if not parsed_url.scheme: |
|
url = "https://" + url |
|
parsed_url = urlparse(url) |
|
|
|
if not parsed_url.netloc: |
|
return "Error: Invalid URL provided" |
|
|
|
|
|
headers = { |
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', |
|
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', |
|
'Accept-Language': 'en-US,en;q=0.9', |
|
'Accept-Encoding': 'gzip, deflate, br', |
|
'DNT': '1', |
|
'Connection': 'keep-alive', |
|
'Upgrade-Insecure-Requests': '1', |
|
'Sec-Fetch-Dest': 'document', |
|
'Sec-Fetch-Mode': 'navigate', |
|
'Sec-Fetch-Site': 'none', |
|
'Sec-Fetch-User': '?1', |
|
'Cache-Control': 'max-age=0' |
|
} |
|
|
|
|
|
session = requests.Session() |
|
session.headers.update(headers) |
|
|
|
|
|
max_retries = 3 |
|
for attempt in range(max_retries): |
|
try: |
|
response = session.get(url, timeout=15, allow_redirects=True) |
|
response.raise_for_status() |
|
break |
|
except requests.exceptions.HTTPError as e: |
|
if e.response.status_code == 403 and attempt < max_retries - 1: |
|
|
|
session.headers['User-Agent'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36' |
|
continue |
|
else: |
|
raise |
|
|
|
|
|
try: |
|
|
|
response.encoding = response.apparent_encoding |
|
raw_html = response.text |
|
except: |
|
|
|
raw_html = response.content.decode('utf-8', errors='ignore') |
|
|
|
|
|
if not raw_html.strip().startswith('<!DOCTYPE') and not raw_html.strip().startswith('<html'): |
|
print(f"Warning: Response doesn't look like HTML. First 200 chars: {raw_html[:200]}") |
|
print(f"Response headers: {dict(response.headers)}") |
|
print(f"Response encoding: {response.encoding}") |
|
print(f"Apparent encoding: {response.apparent_encoding}") |
|
|
|
|
|
try: |
|
raw_html = response.content.decode('latin-1', errors='ignore') |
|
print("Tried latin-1 decoding") |
|
except: |
|
try: |
|
raw_html = response.content.decode('utf-8', errors='ignore') |
|
print("Tried UTF-8 decoding") |
|
except: |
|
raw_html = response.content.decode('cp1252', errors='ignore') |
|
print("Tried cp1252 decoding") |
|
|
|
|
|
soup = BeautifulSoup(raw_html, 'html.parser') |
|
|
|
|
|
script_tags = soup.find_all('script') |
|
if len(script_tags) > 10: |
|
print(f"Warning: This site has {len(script_tags)} script tags - it may be a JavaScript-heavy site") |
|
print("The content might be loaded dynamically and not available in the initial HTML") |
|
|
|
|
|
title = soup.find('title') |
|
title_text = title.get_text().strip() if title else "No title found" |
|
|
|
|
|
meta_desc = soup.find('meta', attrs={'name': 'description'}) |
|
description = meta_desc.get('content', '') if meta_desc else "" |
|
|
|
|
|
content_sections = [] |
|
main_selectors = [ |
|
'main', 'article', '.content', '.main-content', '.post-content', |
|
'#content', '#main', '.entry-content', '.post-body' |
|
] |
|
|
|
for selector in main_selectors: |
|
elements = soup.select(selector) |
|
for element in elements: |
|
text = element.get_text().strip() |
|
if len(text) > 100: |
|
content_sections.append(text) |
|
|
|
|
|
nav_links = [] |
|
nav_elements = soup.find_all(['nav', 'header']) |
|
for nav in nav_elements: |
|
links = nav.find_all('a') |
|
for link in links: |
|
link_text = link.get_text().strip() |
|
link_href = link.get('href', '') |
|
if link_text and link_href: |
|
nav_links.append(f"{link_text}: {link_href}") |
|
|
|
|
|
img_elements = soup.find_all('img') |
|
for img in img_elements: |
|
src = img.get('src', '') |
|
if src: |
|
|
|
if src.startswith('//'): |
|
|
|
absolute_src = 'https:' + src |
|
img['src'] = absolute_src |
|
elif src.startswith('/'): |
|
|
|
absolute_src = urljoin(url, src) |
|
img['src'] = absolute_src |
|
elif not src.startswith(('http://', 'https://')): |
|
|
|
absolute_src = urljoin(url, src) |
|
img['src'] = absolute_src |
|
|
|
|
|
|
|
data_src = img.get('data-src', '') |
|
if data_src and not src: |
|
|
|
if data_src.startswith('//'): |
|
absolute_data_src = 'https:' + data_src |
|
img['src'] = absolute_data_src |
|
elif data_src.startswith('/'): |
|
absolute_data_src = urljoin(url, data_src) |
|
img['src'] = absolute_data_src |
|
elif not data_src.startswith(('http://', 'https://')): |
|
absolute_data_src = urljoin(url, data_src) |
|
img['src'] = absolute_data_src |
|
else: |
|
img['src'] = data_src |
|
|
|
|
|
elements_with_style = soup.find_all(attrs={'style': True}) |
|
for element in elements_with_style: |
|
style_attr = element.get('style', '') |
|
|
|
import re |
|
bg_pattern = r'background-image:\s*url\(["\']?([^"\']+)["\']?\)' |
|
matches = re.findall(bg_pattern, style_attr, re.IGNORECASE) |
|
for match in matches: |
|
if match: |
|
if match.startswith('//'): |
|
absolute_bg = 'https:' + match |
|
style_attr = style_attr.replace(match, absolute_bg) |
|
elif match.startswith('/'): |
|
absolute_bg = urljoin(url, match) |
|
style_attr = style_attr.replace(match, absolute_bg) |
|
elif not match.startswith(('http://', 'https://')): |
|
absolute_bg = urljoin(url, match) |
|
style_attr = style_attr.replace(match, absolute_bg) |
|
element['style'] = style_attr |
|
|
|
|
|
style_elements = soup.find_all('style') |
|
for style in style_elements: |
|
if style.string: |
|
style_content = style.string |
|
|
|
bg_pattern = r'background-image:\s*url\(["\']?([^"\']+)["\']?\)' |
|
matches = re.findall(bg_pattern, style_content, re.IGNORECASE) |
|
for match in matches: |
|
if match: |
|
if match.startswith('//'): |
|
absolute_bg = 'https:' + match |
|
style_content = style_content.replace(match, absolute_bg) |
|
elif match.startswith('/'): |
|
absolute_bg = urljoin(url, match) |
|
style_content = style_content.replace(match, absolute_bg) |
|
elif not match.startswith(('http://', 'https://')): |
|
absolute_bg = urljoin(url, match) |
|
style_content = style_content.replace(match, absolute_bg) |
|
style.string = style_content |
|
|
|
|
|
images = [] |
|
img_elements = soup.find_all('img') |
|
for img in img_elements: |
|
src = img.get('src', '') |
|
alt = img.get('alt', '') |
|
if src: |
|
images.append({'src': src, 'alt': alt}) |
|
|
|
|
|
print(f"Found {len(images)} images:") |
|
for i, img in enumerate(images[:5]): |
|
print(f" {i+1}. {img['alt'] or 'No alt'} - {img['src']}") |
|
|
|
|
|
def test_image_url(img_url): |
|
try: |
|
test_response = requests.head(img_url, timeout=5, allow_redirects=True) |
|
return test_response.status_code == 200 |
|
except: |
|
return False |
|
|
|
|
|
working_images = [] |
|
for img in images[:10]: |
|
if test_image_url(img['src']): |
|
working_images.append(img) |
|
else: |
|
print(f" ❌ Broken image: {img['src']}") |
|
|
|
print(f"Working images: {len(working_images)} out of {len(images)}") |
|
|
|
|
|
modified_html = str(soup) |
|
|
|
|
|
|
|
import re |
|
cleaned_html = re.sub(r'<!--.*?-->', '', modified_html, flags=re.DOTALL) |
|
cleaned_html = re.sub(r'\s+', ' ', cleaned_html) |
|
cleaned_html = re.sub(r'>\s+<', '><', cleaned_html) |
|
|
|
|
|
if len(cleaned_html) > 15000: |
|
cleaned_html = cleaned_html[:15000] + "\n<!-- ... HTML truncated for length ... -->" |
|
|
|
|
|
if not title_text or title_text == "No title found": |
|
title_text = url.split('/')[-1] or url.split('/')[-2] or "Website" |
|
|
|
|
|
if len(cleaned_html.strip()) < 100: |
|
website_content = f""" |
|
WEBSITE REDESIGN - EXTRACTION FAILED |
|
==================================== |
|
|
|
URL: {url} |
|
Title: {title_text} |
|
|
|
ERROR: Could not extract meaningful HTML content from this website. This could be due to: |
|
1. The website uses heavy JavaScript to load content dynamically |
|
2. The website has anti-bot protection |
|
3. The website requires authentication |
|
4. The website is using advanced compression or encoding |
|
|
|
FALLBACK APPROACH: |
|
Please create a modern, responsive website design for a {title_text.lower()} website. Since I couldn't extract the original content, you can: |
|
|
|
1. Create a typical layout for this type of website |
|
2. Use placeholder content that would be appropriate |
|
3. Include modern design elements and responsive features |
|
4. Use a clean, professional design with good typography |
|
5. Make it mobile-friendly and accessible |
|
|
|
The website appears to be: {title_text} |
|
""" |
|
return website_content.strip() |
|
|
|
|
|
website_content = f""" |
|
WEBSITE REDESIGN - ORIGINAL HTML CODE |
|
===================================== |
|
|
|
URL: {url} |
|
Title: {title_text} |
|
Description: {description} |
|
|
|
PAGE ANALYSIS: |
|
- This appears to be a {title_text.lower()} website |
|
- Contains {len(content_sections)} main content sections |
|
- Has {len(nav_links)} navigation links |
|
- Includes {len(images)} images |
|
|
|
IMAGES FOUND (use these exact URLs in your redesign): |
|
{chr(10).join([f"• {img['alt'] or 'Image'} - {img['src']}" for img in working_images[:20]]) if working_images else "No working images found"} |
|
|
|
ALL IMAGES (including potentially broken ones): |
|
{chr(10).join([f"• {img['alt'] or 'Image'} - {img['src']}" for img in images[:20]]) if images else "No images found"} |
|
|
|
ORIGINAL HTML CODE (use this as the base for redesign): |
|
```html |
|
{cleaned_html} |
|
``` |
|
|
|
REDESIGN INSTRUCTIONS: |
|
Please redesign this website with a modern, responsive layout while: |
|
1. Preserving all the original content and structure |
|
2. Maintaining the same navigation and functionality |
|
3. Using the original images and their URLs (listed above) |
|
4. Creating a modern, clean design with improved typography and spacing |
|
5. Making it fully responsive for mobile devices |
|
6. Using modern CSS frameworks and best practices |
|
7. Keeping the same semantic structure but with enhanced styling |
|
|
|
IMPORTANT: All image URLs in the HTML code above have been converted to absolute URLs and are ready to use. Make sure to preserve these exact image URLs in your redesigned version. |
|
|
|
The HTML code above contains the complete original website structure with all images properly linked. Use it as your starting point and create a modernized version. |
|
""" |
|
|
|
return website_content.strip() |
|
|
|
except requests.exceptions.HTTPError as e: |
|
if e.response.status_code == 403: |
|
return f"Error: Website blocked access (403 Forbidden). This website may have anti-bot protection. Try a different website or provide a description of what you want to build instead." |
|
elif e.response.status_code == 404: |
|
return f"Error: Website not found (404). Please check the URL and try again." |
|
elif e.response.status_code >= 500: |
|
return f"Error: Website server error ({e.response.status_code}). Please try again later." |
|
else: |
|
return f"Error accessing website: HTTP {e.response.status_code} - {str(e)}" |
|
except requests.exceptions.Timeout: |
|
return "Error: Request timed out. The website may be slow or unavailable." |
|
except requests.exceptions.ConnectionError: |
|
return "Error: Could not connect to the website. Please check your internet connection and the URL." |
|
except requests.exceptions.RequestException as e: |
|
return f"Error accessing website: {str(e)}" |
|
except Exception as e: |
|
return f"Error extracting website content: {str(e)}" |
|
|
|
|
|
|
|
stop_generation = False |
|
|
|
def stream_from_vllm(messages, thinking_enabled=True, temperature=1.0): |
|
global stop_generation |
|
|
|
|
|
glm_api_key = os.getenv('OPENAI_API_KEY') |
|
glm_base_url = os.getenv('GLM_BASE_URL', 'https://open.bigmodel.cn/api/paas/v4/') |
|
|
|
if not glm_api_key: |
|
|
|
error_msg = """ |
|
GLM-4.5 API Key Not Configured |
|
|
|
To use GLM-4.5, please: |
|
1. Get your API key from: https://open.bigmodel.cn/ |
|
2. Set environment variable: OPENAI_API_KEY=your_api_key_here |
|
3. Optionally set GLM_BASE_URL if using different endpoint |
|
|
|
Example HTML code generation with Gradio: |
|
```html |
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<title>Sample App</title> |
|
<style> |
|
body { font-family: Arial, sans-serif; margin: 40px; } |
|
.container { max-width: 600px; margin: 0 auto; } |
|
h1 { color: #333; } |
|
.button { |
|
background: #007acc; |
|
color: white; |
|
padding: 10px 20px; |
|
border: none; |
|
border-radius: 5px; |
|
cursor: pointer; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container"> |
|
<h1>GLM-4.5 Configuration Required</h1> |
|
<p>Please configure your GLM-4.5 API key to use this model.</p> |
|
<button class="button" onclick="alert('Configure OPENAI_API_KEY environment variable')">Get Started</button> |
|
</div> |
|
</body> |
|
</html> |
|
``` |
|
""" |
|
yield type('Delta', (), {'content': error_msg, 'reasoning_content': None})() |
|
return |
|
|
|
|
|
try: |
|
client = OpenAI( |
|
base_url=glm_base_url, |
|
api_key=glm_api_key, |
|
) |
|
|
|
response = client.chat.completions.create( |
|
model="GLM-4.5", |
|
messages=messages, |
|
temperature=temperature, |
|
stream=True, |
|
max_tokens=65536, |
|
extra_body={ |
|
"thinking": { |
|
"type": "enabled" if thinking_enabled else "disabled", |
|
} |
|
} |
|
) |
|
|
|
for chunk in response: |
|
if stop_generation: |
|
break |
|
if chunk.choices and chunk.choices[0].delta: |
|
yield chunk.choices[0].delta |
|
|
|
except Exception as e: |
|
|
|
error_msg = f"""Error connecting to GLM-4.5: {str(e)} |
|
|
|
Please check: |
|
1. OPENAI_API_KEY environment variable is set correctly |
|
2. API key is valid and has credits |
|
3. Network connection is working |
|
4. GLM_BASE_URL is correct (current: {glm_base_url}) |
|
|
|
Here's a sample HTML code to test the UI: |
|
```html |
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<title>GLM-4.5 Error - Sample Output</title> |
|
<style> |
|
body {{ |
|
font-family: Arial, sans-serif; |
|
margin: 40px; |
|
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
color: white; |
|
}} |
|
.container {{ |
|
max-width: 600px; |
|
margin: 0 auto; |
|
background: rgba(255,255,255,0.1); |
|
padding: 30px; |
|
border-radius: 15px; |
|
backdrop-filter: blur(10px); |
|
}} |
|
h1 {{ color: #fff; text-align: center; }} |
|
.error {{ background: rgba(255,0,0,0.2); padding: 15px; border-radius: 8px; margin: 20px 0; }} |
|
.button {{ |
|
background: rgba(255,255,255,0.2); |
|
color: white; |
|
padding: 12px 24px; |
|
border: 1px solid rgba(255,255,255,0.3); |
|
border-radius: 8px; |
|
cursor: pointer; |
|
display: block; |
|
margin: 20px auto; |
|
}} |
|
.button:hover {{ background: rgba(255,255,255,0.3); }} |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container"> |
|
<h1>🤖 GLM-4.5 Configuration Error</h1> |
|
<div class="error"> |
|
<strong>Error:</strong> {str(e)} |
|
</div> |
|
<p>This is a sample HTML output to demonstrate the UI while you configure GLM-4.5.</p> |
|
<button class="button" onclick="window.open('https://open.bigmodel.cn/', '_blank')">Configure GLM-4.5 API</button> |
|
</div> |
|
<script> |
|
console.log('GLM-4.5 API Error: {str(e)}'); |
|
</script> |
|
</body> |
|
</html> |
|
```""" |
|
print(f"GLM-4.5 API Error: {e}") |
|
yield type('Delta', (), {'content': error_msg, 'reasoning_content': None})() |
|
|
|
|
|
class GLM45Model: |
|
def __init__(self): |
|
self.accumulated_content = "" |
|
self.accumulated_reasoning = "" |
|
|
|
def reset_state(self): |
|
self.accumulated_content = "" |
|
self.accumulated_reasoning = "" |
|
|
|
def _render_response(self, reasoning_content, regular_content, skip_think=False): |
|
html_parts = [] |
|
|
|
if reasoning_content and not skip_think: |
|
reasoning_escaped = html.escape(reasoning_content).replace("\n", "<br>") |
|
think_html = ( |
|
"<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>Thinking</summary>" |
|
"<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>" |
|
+ reasoning_escaped + |
|
"</div></details>" |
|
) |
|
html_parts.append(think_html) |
|
|
|
if regular_content: |
|
content_escaped = html.escape(regular_content).replace("\n", "<br>") |
|
content_html = f"<div style='margin:0.5em 0; white-space: pre-wrap; line-height:1.6;'>{content_escaped}</div>" |
|
html_parts.append(content_html) |
|
|
|
return "".join(html_parts) |
|
|
|
def _build_messages(self, raw_hist, sys_prompt): |
|
msgs = [] |
|
if sys_prompt.strip(): |
|
msgs.append({"role": "system", "content": sys_prompt.strip()}) |
|
|
|
for h in raw_hist: |
|
if h["role"] == "user": |
|
msgs.append({"role": "user", "content": h["content"]}) |
|
else: |
|
msg = {"role": "assistant", "content": h.get("content", "")} |
|
if h.get("reasoning_content"): |
|
msg["reasoning_content"] = h.get("reasoning_content") |
|
msgs.append(msg) |
|
return msgs |
|
|
|
def stream_generate(self, raw_hist, sys_prompt, thinking_enabled=True, temperature=1.0): |
|
global stop_generation |
|
stop_generation = False |
|
msgs = self._build_messages(raw_hist, sys_prompt) |
|
self.reset_state() |
|
|
|
try: |
|
for delta in stream_from_vllm(msgs, thinking_enabled, temperature): |
|
if stop_generation: |
|
break |
|
|
|
if hasattr(delta, 'content') and delta.content: |
|
self.accumulated_content += delta.content |
|
|
|
if hasattr(delta, 'reasoning_content') and delta.reasoning_content: |
|
self.accumulated_reasoning += delta.reasoning_content |
|
|
|
yield self._render_response(self.accumulated_reasoning, self.accumulated_content, not thinking_enabled) |
|
|
|
except Exception as e: |
|
yield self._render_response("", f"Error: {str(e)}") |
|
|
|
|
|
|
|
glm45 = GLM45Model() |
|
|
|
|
|
def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], website_url: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False, language: str = "html", provider: str = "auto"): |
|
if query is None: |
|
query = '' |
|
if _history is None: |
|
_history = [] |
|
|
|
if not isinstance(_history, list): |
|
_history = [] |
|
_history = [h for h in _history if isinstance(h, list) and len(h) == 2] |
|
|
|
|
|
has_existing_content = False |
|
last_assistant_msg = "" |
|
if _history and len(_history[-1]) > 1: |
|
last_assistant_msg = _history[-1][1] |
|
|
|
if ('<!DOCTYPE html>' in last_assistant_msg or |
|
'<html' in last_assistant_msg or |
|
'import gradio' in last_assistant_msg or |
|
'import streamlit' in last_assistant_msg or |
|
'def ' in last_assistant_msg and 'app' in last_assistant_msg or |
|
'IMPORTED PROJECT FROM HUGGING FACE SPACE' in last_assistant_msg or |
|
'=== index.html ===' in last_assistant_msg or |
|
'=== index.js ===' in last_assistant_msg or |
|
'=== style.css ===' in last_assistant_msg or |
|
'=== src/App.svelte ===' in last_assistant_msg): |
|
has_existing_content = True |
|
|
|
|
|
if has_existing_content: |
|
|
|
if language == "transformers.js": |
|
system_prompt = TransformersJSFollowUpSystemPrompt |
|
elif language == "svelte": |
|
system_prompt = FollowUpSystemPrompt |
|
else: |
|
system_prompt = FollowUpSystemPrompt |
|
else: |
|
|
|
if language == "html": |
|
system_prompt = HTML_SYSTEM_PROMPT_WITH_SEARCH if enable_search else HTML_SYSTEM_PROMPT |
|
elif language == "transformers.js": |
|
system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH if enable_search else TRANSFORMERS_JS_SYSTEM_PROMPT |
|
elif language == "svelte": |
|
system_prompt = SVELTE_SYSTEM_PROMPT_WITH_SEARCH if enable_search else SVELTE_SYSTEM_PROMPT |
|
else: |
|
system_prompt = GENERIC_SYSTEM_PROMPT_WITH_SEARCH.format(language=language) if enable_search else GENERIC_SYSTEM_PROMPT.format(language=language) |
|
|
|
messages = history_to_messages(_history, system_prompt) |
|
|
|
|
|
file_text = "" |
|
if file: |
|
file_text = extract_text_from_file(file) |
|
if file_text: |
|
file_text = file_text[:5000] |
|
query = f"{query}\n\n[Reference file content below]\n{file_text}" |
|
|
|
|
|
website_text = "" |
|
if website_url and website_url.strip(): |
|
website_text = extract_website_content(website_url.strip()) |
|
if website_text and not website_text.startswith("Error"): |
|
website_text = website_text[:8000] |
|
query = f"{query}\n\n[Website content to redesign below]\n{website_text}" |
|
elif website_text.startswith("Error"): |
|
|
|
fallback_guidance = """ |
|
Since I couldn't extract the website content, please provide additional details about what you'd like to build: |
|
|
|
1. What type of website is this? (e.g., e-commerce, blog, portfolio, dashboard) |
|
2. What are the main features you want? |
|
3. What's the target audience? |
|
4. Any specific design preferences? (colors, style, layout) |
|
|
|
This will help me create a better design for you.""" |
|
query = f"{query}\n\n[Error extracting website: {website_text}]{fallback_guidance}" |
|
|
|
|
|
enhanced_query = enhance_query_with_search(query, enable_search) |
|
|
|
|
|
if _current_model["id"] == "GLM-4.5": |
|
|
|
if image is not None: |
|
messages.append(create_multimodal_message(enhanced_query, image)) |
|
else: |
|
messages.append({'role': 'user', 'content': enhanced_query}) |
|
|
|
content = "" |
|
reasoning_content = "" |
|
|
|
try: |
|
|
|
for delta in stream_from_vllm(messages, True, 1.0): |
|
if stop_generation: |
|
break |
|
|
|
if hasattr(delta, 'content') and delta.content: |
|
content += delta.content |
|
|
|
if hasattr(delta, 'reasoning_content') and delta.reasoning_content: |
|
reasoning_content += delta.reasoning_content |
|
|
|
|
|
clean_code = remove_code_block(content) |
|
search_status = " (with web search)" if enable_search and tavily_client else "" |
|
|
|
|
|
if language == "transformers.js": |
|
files = parse_transformers_js_output(clean_code) |
|
if files['index.html'] and files['index.js'] and files['style.css']: |
|
formatted_output = format_transformers_js_output(files) |
|
yield { |
|
code_output: gr.update(value=formatted_output, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(files['index.html']) if files['index.html'] else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
yield { |
|
code_output: gr.update(value=clean_code, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Generating transformers.js app...</div>", |
|
} |
|
elif language == "svelte": |
|
yield { |
|
code_output: gr.update(value=clean_code, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Generating Svelte app...</div>", |
|
} |
|
else: |
|
if has_existing_content: |
|
if clean_code.strip().startswith("<!DOCTYPE html>") or clean_code.strip().startswith("<html"): |
|
yield { |
|
code_output: gr.update(value=clean_code, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_code) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_search_replace_changes(last_content, clean_code) |
|
clean_content = remove_code_block(modified_content) |
|
yield { |
|
code_output: gr.update(value=clean_content, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_content) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
yield { |
|
code_output: gr.update(value=clean_code, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_code) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
|
|
except Exception as e: |
|
content = f"Error: {str(e)}" |
|
print(f"GLM-4.5 Error: {e}") |
|
|
|
|
|
clean_code = remove_code_block(content) |
|
|
|
|
|
if reasoning_content: |
|
full_response = f"**Thinking:**\n{reasoning_content}\n\n**Code:**\n{content}" |
|
else: |
|
full_response = content |
|
|
|
if language == "transformers.js": |
|
files = parse_transformers_js_output(clean_code) |
|
if files['index.html'] and files['index.js'] and files['style.css']: |
|
formatted_output = format_transformers_js_output(files) |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: formatted_output, |
|
history: _history, |
|
sandbox: send_to_sandbox(files['index.html']), |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: clean_code, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Error parsing transformers.js output. Please try again.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
elif language == "svelte": |
|
files = parse_svelte_output(clean_code) |
|
if files['src/App.svelte'] and files['src/app.css']: |
|
formatted_output = format_svelte_output(files) |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: formatted_output, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: clean_code, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
if has_existing_content and not (clean_code.strip().startswith("<!DOCTYPE html>") or clean_code.strip().startswith("<html")): |
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_search_replace_changes(last_content, clean_code) |
|
clean_content = remove_code_block(modified_content) |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: clean_content, |
|
history: _history, |
|
sandbox: send_to_sandbox(clean_content) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
_history.append([query, full_response]) |
|
yield { |
|
code_output: clean_code, |
|
history: _history, |
|
sandbox: send_to_sandbox(clean_code) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
return |
|
|
|
|
|
client = get_inference_client(_current_model["id"], provider) |
|
|
|
if image is not None: |
|
messages.append(create_multimodal_message(enhanced_query, image)) |
|
else: |
|
messages.append({'role': 'user', 'content': enhanced_query}) |
|
try: |
|
|
|
if _current_model["id"] == "codestral-2508": |
|
completion = client.chat.stream( |
|
model=_current_model["id"], |
|
messages=messages, |
|
max_tokens=16384 |
|
) |
|
else: |
|
completion = client.chat.completions.create( |
|
model=_current_model["id"], |
|
messages=messages, |
|
stream=True, |
|
max_tokens=16384 |
|
) |
|
content = "" |
|
for chunk in completion: |
|
|
|
chunk_content = None |
|
if _current_model["id"] == "codestral-2508": |
|
|
|
if ( |
|
hasattr(chunk, "data") and chunk.data and |
|
hasattr(chunk.data, "choices") and chunk.data.choices and |
|
hasattr(chunk.data.choices[0], "delta") and |
|
hasattr(chunk.data.choices[0].delta, "content") and |
|
chunk.data.choices[0].delta.content is not None |
|
): |
|
chunk_content = chunk.data.choices[0].delta.content |
|
else: |
|
|
|
if ( |
|
hasattr(chunk, "choices") and chunk.choices and |
|
hasattr(chunk.choices[0], "delta") and |
|
hasattr(chunk.choices[0].delta, "content") and |
|
chunk.choices[0].delta.content is not None |
|
): |
|
chunk_content = chunk.choices[0].delta.content |
|
|
|
if chunk_content: |
|
content += chunk_content |
|
search_status = " (with web search)" if enable_search and tavily_client else "" |
|
|
|
|
|
if language == "transformers.js": |
|
files = parse_transformers_js_output(content) |
|
if files['index.html'] and files['index.js'] and files['style.css']: |
|
|
|
formatted_output = format_transformers_js_output(files) |
|
yield { |
|
code_output: gr.update(value=formatted_output, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(files['index.html']) if files['index.html'] else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
elif has_existing_content: |
|
|
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_transformers_js_search_replace_changes(last_content, content) |
|
yield { |
|
code_output: gr.update(value=modified_content, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(parse_transformers_js_output(modified_content)['index.html']) if parse_transformers_js_output(modified_content)['index.html'] else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
|
|
yield { |
|
code_output: gr.update(value=content, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Generating transformers.js app...</div>", |
|
} |
|
elif language == "svelte": |
|
|
|
|
|
yield { |
|
code_output: gr.update(value=content, language="html"), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Generating Svelte app...</div>", |
|
} |
|
else: |
|
clean_code = remove_code_block(content) |
|
if has_existing_content: |
|
|
|
if clean_code.strip().startswith("<!DOCTYPE html>") or clean_code.strip().startswith("<html"): |
|
|
|
yield { |
|
code_output: gr.update(value=clean_code, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_code) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
|
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_search_replace_changes(last_content, clean_code) |
|
clean_content = remove_code_block(modified_content) |
|
yield { |
|
code_output: gr.update(value=clean_content, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_content) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
else: |
|
yield { |
|
code_output: gr.update(value=clean_code, language=get_gradio_language(language)), |
|
history_output: history_to_chatbot_messages(_history), |
|
sandbox: send_to_sandbox(clean_code) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
} |
|
|
|
|
|
|
|
if language == "transformers.js": |
|
|
|
files = parse_transformers_js_output(content) |
|
if files['index.html'] and files['index.js'] and files['style.css']: |
|
|
|
formatted_output = format_transformers_js_output(files) |
|
_history.append([query, formatted_output]) |
|
yield { |
|
code_output: formatted_output, |
|
history: _history, |
|
sandbox: send_to_sandbox(files['index.html']), |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
elif has_existing_content: |
|
|
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_transformers_js_search_replace_changes(last_content, content) |
|
_history.append([query, modified_content]) |
|
yield { |
|
code_output: modified_content, |
|
history: _history, |
|
sandbox: send_to_sandbox(parse_transformers_js_output(modified_content)['index.html']), |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
|
|
_history.append([query, content]) |
|
yield { |
|
code_output: content, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Error parsing transformers.js output. Please try again.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
elif language == "svelte": |
|
|
|
files = parse_svelte_output(content) |
|
if files['src/App.svelte'] and files['src/app.css']: |
|
|
|
formatted_output = format_svelte_output(files) |
|
_history.append([query, formatted_output]) |
|
yield { |
|
code_output: formatted_output, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
elif has_existing_content: |
|
|
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_search_replace_changes(last_content, content) |
|
_history.append([query, modified_content]) |
|
yield { |
|
code_output: modified_content, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
|
|
_history.append([query, content]) |
|
yield { |
|
code_output: content, |
|
history: _history, |
|
sandbox: "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
elif has_existing_content: |
|
|
|
final_code = remove_code_block(content) |
|
if final_code.strip().startswith("<!DOCTYPE html>") or final_code.strip().startswith("<html"): |
|
|
|
clean_content = final_code |
|
else: |
|
|
|
last_content = _history[-1][1] if _history and len(_history[-1]) > 1 else "" |
|
modified_content = apply_search_replace_changes(last_content, final_code) |
|
clean_content = remove_code_block(modified_content) |
|
|
|
_history.append([query, clean_content]) |
|
yield { |
|
code_output: clean_content, |
|
history: _history, |
|
sandbox: send_to_sandbox(clean_content) if language == "html" else "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>", |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
else: |
|
|
|
_history.append([query, content]) |
|
yield { |
|
code_output: remove_code_block(content), |
|
history: _history, |
|
sandbox: send_to_sandbox(remove_code_block(content)), |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
yield { |
|
code_output: error_message, |
|
history_output: history_to_chatbot_messages(_history), |
|
} |
|
|
|
|
|
|
|
def add_anycoder_tag_to_readme(api, repo_id): |
|
"""Download existing README, add anycoder tag, and upload back.""" |
|
try: |
|
import tempfile |
|
import re |
|
|
|
|
|
readme_path = api.hf_hub_download( |
|
repo_id=repo_id, |
|
filename="README.md", |
|
repo_type="space" |
|
) |
|
|
|
|
|
with open(readme_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
|
|
if content.startswith('---'): |
|
|
|
parts = content.split('---', 2) |
|
if len(parts) >= 3: |
|
frontmatter = parts[1].strip() |
|
body = parts[2] if len(parts) > 2 else "" |
|
|
|
|
|
if 'tags:' in frontmatter: |
|
|
|
if '- anycoder' not in frontmatter: |
|
frontmatter = re.sub(r'(tags:\s*\n(?:\s*-\s*[^\n]+\n)*)', r'\1- anycoder\n', frontmatter) |
|
else: |
|
|
|
frontmatter += '\ntags:\n- anycoder' |
|
|
|
|
|
new_content = f"---\n{frontmatter}\n---{body}" |
|
else: |
|
|
|
new_content = content.replace('---', '---\ntags:\n- anycoder\n---', 1) |
|
else: |
|
|
|
new_content = f"---\ntags:\n- anycoder\n---\n\n{content}" |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".md", delete=False, encoding='utf-8') as f: |
|
f.write(new_content) |
|
temp_path = f.name |
|
|
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="README.md", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
|
|
import os |
|
os.unlink(temp_path) |
|
|
|
except Exception as e: |
|
print(f"Warning: Could not modify README.md to add anycoder tag: {e}") |
|
|
|
def extract_import_statements(code): |
|
"""Extract import statements from generated code.""" |
|
import ast |
|
import re |
|
|
|
import_statements = [] |
|
|
|
|
|
builtin_modules = { |
|
'os', 'sys', 'json', 'time', 'datetime', 'random', 'math', 're', 'collections', |
|
'itertools', 'functools', 'pathlib', 'urllib', 'http', 'email', 'html', 'xml', |
|
'csv', 'tempfile', 'shutil', 'subprocess', 'threading', 'multiprocessing', |
|
'asyncio', 'logging', 'typing', 'base64', 'hashlib', 'secrets', 'uuid', |
|
'copy', 'pickle', 'io', 'contextlib', 'warnings', 'sqlite3', 'gzip', 'zipfile', |
|
'tarfile', 'socket', 'ssl', 'platform', 'getpass', 'pwd', 'grp', 'stat', |
|
'glob', 'fnmatch', 'linecache', 'traceback', 'inspect', 'keyword', 'token', |
|
'tokenize', 'ast', 'code', 'codeop', 'dis', 'py_compile', 'compileall', |
|
'importlib', 'pkgutil', 'modulefinder', 'runpy', 'site', 'sysconfig' |
|
} |
|
|
|
try: |
|
|
|
tree = ast.parse(code) |
|
|
|
for node in ast.walk(tree): |
|
if isinstance(node, ast.Import): |
|
for alias in node.names: |
|
module_name = alias.name.split('.')[0] |
|
if module_name not in builtin_modules and not module_name.startswith('_'): |
|
import_statements.append(f"import {alias.name}") |
|
|
|
elif isinstance(node, ast.ImportFrom): |
|
if node.module: |
|
module_name = node.module.split('.')[0] |
|
if module_name not in builtin_modules and not module_name.startswith('_'): |
|
names = [alias.name for alias in node.names] |
|
import_statements.append(f"from {node.module} import {', '.join(names)}") |
|
|
|
except SyntaxError: |
|
|
|
for line in code.split('\n'): |
|
line = line.strip() |
|
if line.startswith('import ') or line.startswith('from '): |
|
|
|
if line.startswith('import '): |
|
module_name = line.split()[1].split('.')[0] |
|
elif line.startswith('from '): |
|
module_name = line.split()[1].split('.')[0] |
|
|
|
if module_name not in builtin_modules and not module_name.startswith('_'): |
|
import_statements.append(line) |
|
|
|
return list(set(import_statements)) |
|
|
|
def generate_requirements_txt_with_llm(import_statements): |
|
"""Generate requirements.txt content using LLM based on import statements.""" |
|
if not import_statements: |
|
return "# No additional dependencies required\n" |
|
|
|
|
|
try: |
|
client = get_inference_client("Qwen/Qwen3-Coder-480B-A35B-Instruct", "auto") |
|
|
|
imports_text = '\n'.join(import_statements) |
|
|
|
prompt = f"""Based on the following Python import statements, generate a comprehensive requirements.txt file with all necessary and commonly used related packages: |
|
|
|
{imports_text} |
|
|
|
Instructions: |
|
- Include the direct packages needed for the imports |
|
- Include commonly used companion packages and dependencies for better functionality |
|
- Use correct PyPI package names (e.g., cv2 -> opencv-python, PIL -> Pillow, sklearn -> scikit-learn) |
|
- Examples of comprehensive dependencies: |
|
* transformers often needs: accelerate, torch, tokenizers, datasets |
|
* gradio often needs: requests, Pillow for image handling |
|
* pandas often needs: numpy, openpyxl for Excel files |
|
* matplotlib often needs: numpy, pillow for image saving |
|
* sklearn often needs: numpy, scipy, joblib |
|
* streamlit often needs: pandas, numpy, requests |
|
* opencv-python often needs: numpy, pillow |
|
* fastapi often needs: uvicorn, pydantic |
|
* torch often needs: torchvision, torchaudio (if doing computer vision/audio) |
|
- Include packages for common file formats if relevant (openpyxl, python-docx, PyPDF2) |
|
- Do not include Python built-in modules |
|
- Do not specify versions unless there are known compatibility issues |
|
- One package per line |
|
- If no external packages are needed, return "# No additional dependencies required" |
|
|
|
Generate a comprehensive requirements.txt that ensures the application will work smoothly:""" |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a Python packaging expert specializing in creating comprehensive, production-ready requirements.txt files. Your goal is to ensure applications work smoothly by including not just direct dependencies but also commonly needed companion packages, popular extensions, and supporting libraries that developers typically need together."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
response = client.chat.completions.create( |
|
model="Qwen/Qwen3-Coder-480B-A35B-Instruct", |
|
messages=messages, |
|
max_tokens=1024, |
|
temperature=0.1 |
|
) |
|
|
|
requirements_content = response.choices[0].message.content.strip() |
|
|
|
|
|
if '```' in requirements_content: |
|
|
|
lines = requirements_content.split('\n') |
|
in_code_block = False |
|
clean_lines = [] |
|
for line in lines: |
|
if line.strip().startswith('```'): |
|
in_code_block = not in_code_block |
|
continue |
|
if in_code_block: |
|
clean_lines.append(line) |
|
requirements_content = '\n'.join(clean_lines).strip() |
|
|
|
|
|
if requirements_content and not requirements_content.endswith('\n'): |
|
requirements_content += '\n' |
|
|
|
return requirements_content if requirements_content else "# No additional dependencies required\n" |
|
|
|
except Exception as e: |
|
|
|
dependencies = set() |
|
special_cases = { |
|
'cv2': 'opencv-python', |
|
'PIL': 'Pillow', |
|
'sklearn': 'scikit-learn', |
|
'skimage': 'scikit-image', |
|
'bs4': 'beautifulsoup4' |
|
} |
|
|
|
for stmt in import_statements: |
|
if stmt.startswith('import '): |
|
module_name = stmt.split()[1].split('.')[0] |
|
package_name = special_cases.get(module_name, module_name) |
|
dependencies.add(package_name) |
|
elif stmt.startswith('from '): |
|
module_name = stmt.split()[1].split('.')[0] |
|
package_name = special_cases.get(module_name, module_name) |
|
dependencies.add(package_name) |
|
|
|
if dependencies: |
|
return '\n'.join(sorted(dependencies)) + '\n' |
|
else: |
|
return "# No additional dependencies required\n" |
|
|
|
def wrap_html_in_gradio_app(html_code): |
|
|
|
safe_html = html_code.replace('"""', r'\"\"\"') |
|
|
|
|
|
import_statements = extract_import_statements(html_code) |
|
requirements_comment = "" |
|
if import_statements: |
|
requirements_content = generate_requirements_txt_with_llm(import_statements) |
|
requirements_comment = ( |
|
"# Generated requirements.txt content (create this file manually if needed):\n" |
|
+ '\n'.join(f"# {line}" for line in requirements_content.strip().split('\n')) + '\n\n' |
|
) |
|
|
|
return ( |
|
f'{requirements_comment}' |
|
'import gradio as gr\n\n' |
|
'def show_html():\n' |
|
f' return """{safe_html}"""\n\n' |
|
'demo = gr.Interface(fn=show_html, inputs=None, outputs=gr.HTML())\n\n' |
|
'if __name__ == "__main__":\n' |
|
' demo.launch()\n' |
|
) |
|
|
|
def deploy_to_spaces(code): |
|
if not code or not code.strip(): |
|
return |
|
|
|
app_py = wrap_html_in_gradio_app(code.strip()) |
|
base_url = "https://huggingface.co/new-space" |
|
params = urllib.parse.urlencode({ |
|
"name": "new-space", |
|
"sdk": "gradio" |
|
}) |
|
|
|
files_params = urllib.parse.urlencode({ |
|
"files[0][path]": "app.py", |
|
"files[0][content]": app_py |
|
}) |
|
full_url = f"{base_url}?{params}&{files_params}" |
|
webbrowser.open_new_tab(full_url) |
|
|
|
def wrap_html_in_static_app(html_code): |
|
|
|
return html_code |
|
|
|
def deploy_to_spaces_static(code): |
|
if not code or not code.strip(): |
|
return |
|
|
|
app_html = wrap_html_in_static_app(code.strip()) |
|
base_url = "https://huggingface.co/new-space" |
|
params = urllib.parse.urlencode({ |
|
"name": "new-space", |
|
"sdk": "static" |
|
}) |
|
files_params = urllib.parse.urlencode({ |
|
"files[0][path]": "index.html", |
|
"files[0][content]": app_html |
|
}) |
|
full_url = f"{base_url}?{params}&{files_params}" |
|
webbrowser.open_new_tab(full_url) |
|
|
|
def check_hf_space_url(url: str) -> Tuple[bool, Optional[str], Optional[str]]: |
|
"""Check if URL is a valid Hugging Face Spaces URL and extract username/project""" |
|
import re |
|
|
|
|
|
url_pattern = re.compile( |
|
r'^(https?://)?(huggingface\.co|hf\.co)/spaces/([\w-]+)/([\w-]+)$', |
|
re.IGNORECASE |
|
) |
|
|
|
match = url_pattern.match(url.strip()) |
|
if match: |
|
username = match.group(3) |
|
project_name = match.group(4) |
|
return True, username, project_name |
|
return False, None, None |
|
|
|
def fetch_hf_space_content(username: str, project_name: str) -> str: |
|
"""Fetch content from a Hugging Face Space""" |
|
try: |
|
import requests |
|
from huggingface_hub import HfApi |
|
|
|
|
|
api = HfApi() |
|
space_info = api.space_info(f"{username}/{project_name}") |
|
|
|
|
|
sdk = space_info.sdk |
|
main_file = None |
|
|
|
|
|
if sdk == "static": |
|
file_patterns = ["index.html"] |
|
elif sdk == "gradio": |
|
file_patterns = ["app.py", "main.py", "gradio_app.py"] |
|
elif sdk == "streamlit": |
|
file_patterns = ["streamlit_app.py", "src/streamlit_app.py", "app.py", "src/app.py", "main.py", "src/main.py", "Home.py", "src/Home.py", "🏠_Home.py", "src/🏠_Home.py", "1_🏠_Home.py", "src/1_🏠_Home.py"] |
|
else: |
|
|
|
file_patterns = ["app.py", "src/app.py", "index.html", "streamlit_app.py", "src/streamlit_app.py", "main.py", "src/main.py", "Home.py", "src/Home.py"] |
|
|
|
|
|
for file in file_patterns: |
|
try: |
|
content = api.hf_hub_download( |
|
repo_id=f"{username}/{project_name}", |
|
filename=file, |
|
repo_type="space" |
|
) |
|
main_file = file |
|
break |
|
except: |
|
continue |
|
|
|
|
|
if not main_file and sdk in ["streamlit", "gradio"]: |
|
try: |
|
from huggingface_hub import list_repo_files |
|
files = list_repo_files(repo_id=f"{username}/{project_name}", repo_type="space") |
|
|
|
|
|
python_files = [f for f in files if f.endswith('.py') and not f.startswith('.') and |
|
(('/' not in f) or f.startswith('src/'))] |
|
|
|
for py_file in python_files: |
|
try: |
|
content = api.hf_hub_download( |
|
repo_id=f"{username}/{project_name}", |
|
filename=py_file, |
|
repo_type="space" |
|
) |
|
main_file = py_file |
|
break |
|
except: |
|
continue |
|
except: |
|
pass |
|
|
|
if main_file: |
|
content = api.hf_hub_download( |
|
repo_id=f"{username}/{project_name}", |
|
filename=main_file, |
|
repo_type="space" |
|
) |
|
|
|
|
|
with open(content, 'r', encoding='utf-8') as f: |
|
file_content = f.read() |
|
|
|
return f"""IMPORTED PROJECT FROM HUGGING FACE SPACE |
|
============================================== |
|
|
|
Space: {username}/{project_name} |
|
SDK: {sdk} |
|
Main File: {main_file} |
|
|
|
{file_content}""" |
|
else: |
|
|
|
try: |
|
from huggingface_hub import list_repo_files |
|
files = list_repo_files(repo_id=f"{username}/{project_name}", repo_type="space") |
|
available_files = [f for f in files if not f.startswith('.') and not f.endswith('.md')] |
|
return f"Error: Could not find main file in space {username}/{project_name}.\n\nSDK: {sdk}\nAvailable files: {', '.join(available_files[:10])}{'...' if len(available_files) > 10 else ''}\n\nTried looking for: {', '.join(file_patterns)}" |
|
except: |
|
return f"Error: Could not find main file in space {username}/{project_name}. Expected files for {sdk} SDK: {', '.join(file_patterns) if 'file_patterns' in locals() else 'standard files'}" |
|
|
|
except Exception as e: |
|
return f"Error fetching space content: {str(e)}" |
|
|
|
def load_project_from_url(url: str) -> Tuple[str, str]: |
|
"""Load project from Hugging Face Space URL""" |
|
|
|
is_valid, username, project_name = check_hf_space_url(url) |
|
|
|
if not is_valid: |
|
return "Error: Please enter a valid Hugging Face Spaces URL.\n\nExpected format: https://huggingface.co/spaces/username/project", "" |
|
|
|
|
|
content = fetch_hf_space_content(username, project_name) |
|
|
|
if content.startswith("Error:"): |
|
return content, "" |
|
|
|
|
|
lines = content.split('\n') |
|
code_start = 0 |
|
for i, line in enumerate(lines): |
|
|
|
if (line.strip() and |
|
not line.startswith('=') and |
|
not line.startswith('IMPORTED PROJECT') and |
|
not line.startswith('Space:') and |
|
not line.startswith('SDK:') and |
|
not line.startswith('Main File:')): |
|
code_start = i |
|
break |
|
|
|
code_content = '\n'.join(lines[code_start:]) |
|
|
|
return f"✅ Successfully imported project from {username}/{project_name}", code_content |
|
|
|
|
|
with gr.Blocks( |
|
theme=gr.themes.Base( |
|
primary_hue="blue", |
|
secondary_hue="gray", |
|
neutral_hue="gray", |
|
font=gr.themes.GoogleFont("Inter"), |
|
font_mono=gr.themes.GoogleFont("JetBrains Mono"), |
|
text_size=gr.themes.sizes.text_md, |
|
spacing_size=gr.themes.sizes.spacing_md, |
|
radius_size=gr.themes.sizes.radius_md |
|
), |
|
title="AnyCoder - AI Code Generator" |
|
) as demo: |
|
history = gr.State([]) |
|
setting = gr.State({ |
|
"system": HTML_SYSTEM_PROMPT, |
|
}) |
|
current_model = gr.State(AVAILABLE_MODELS[10]) |
|
open_panel = gr.State(None) |
|
last_login_state = gr.State(None) |
|
|
|
with gr.Sidebar(): |
|
login_button = gr.LoginButton() |
|
|
|
|
|
gr.Markdown("📥 Load Existing Project") |
|
load_project_url = gr.Textbox( |
|
label="Hugging Face Space URL", |
|
placeholder="https://huggingface.co/spaces/username/project", |
|
lines=1 |
|
) |
|
load_project_btn = gr.Button("Import Project", variant="secondary", size="sm") |
|
load_project_status = gr.Markdown(visible=False) |
|
|
|
gr.Markdown("---") |
|
|
|
input = gr.Textbox( |
|
label="What would you like to build?", |
|
placeholder="Describe your application...", |
|
lines=3, |
|
visible=True |
|
) |
|
|
|
language_choices = [ |
|
"html", "python", "transformers.js", "svelte", "c", "cpp", "markdown", "latex", "json", "css", "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell", "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite", "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql", "sql-gpSQL", "sql-sparkSQL", "sql-esper" |
|
] |
|
language_dropdown = gr.Dropdown( |
|
choices=language_choices, |
|
value="html", |
|
label="Code Language", |
|
visible=True |
|
) |
|
website_url_input = gr.Textbox( |
|
label="website for redesign", |
|
placeholder="https://example.com", |
|
lines=1, |
|
visible=True |
|
) |
|
file_input = gr.File( |
|
label="Reference file", |
|
file_types=[".pdf", ".txt", ".md", ".csv", ".docx", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"], |
|
visible=True |
|
) |
|
image_input = gr.Image( |
|
label="UI design image", |
|
visible=False |
|
) |
|
with gr.Row(): |
|
btn = gr.Button("Generate", variant="primary", size="lg", scale=2, visible=True) |
|
clear_btn = gr.Button("Clear", variant="secondary", size="sm", scale=1, visible=True) |
|
|
|
space_name_input = gr.Textbox( |
|
label="app name (e.g. my-cool-app)", |
|
placeholder="Enter your app name", |
|
lines=1, |
|
visible=False |
|
) |
|
sdk_choices = [ |
|
("Gradio (Python)", "gradio"), |
|
("Streamlit (Python)", "streamlit"), |
|
("Static (HTML)", "static"), |
|
("Transformers.js", "transformers.js"), |
|
("Svelte", "svelte") |
|
] |
|
sdk_dropdown = gr.Dropdown( |
|
choices=[x[0] for x in sdk_choices], |
|
value="Static (HTML)", |
|
label="App SDK", |
|
visible=False |
|
) |
|
deploy_btn = gr.Button("🚀 Deploy App", variant="primary", visible=False) |
|
deploy_status = gr.Markdown(visible=False, label="Deploy status") |
|
|
|
search_toggle = gr.Checkbox( |
|
label="🔍 Web search", |
|
value=False, |
|
visible=True |
|
) |
|
model_dropdown = gr.Dropdown( |
|
choices=[model['name'] for model in AVAILABLE_MODELS], |
|
value="Qwen3-Coder-480B-A35B-Instruct", |
|
label="Model", |
|
visible=True |
|
) |
|
provider_state = gr.State("auto") |
|
gr.Markdown("**Quick start**", visible=True) |
|
with gr.Column(visible=True) as quick_examples_col: |
|
for i, demo_item in enumerate(DEMO_LIST[:3]): |
|
demo_card = gr.Button( |
|
value=demo_item['title'], |
|
variant="secondary", |
|
size="sm" |
|
) |
|
demo_card.click( |
|
fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']), |
|
outputs=input |
|
) |
|
if not tavily_client: |
|
gr.Markdown("⚠️ Web search unavailable", visible=True) |
|
|
|
def on_model_change(model_name): |
|
for m in AVAILABLE_MODELS: |
|
if m['name'] == model_name: |
|
return m, update_image_input_visibility(m) |
|
return AVAILABLE_MODELS[0], update_image_input_visibility(AVAILABLE_MODELS[0]) |
|
def save_prompt(input): |
|
return {setting: {"system": input}} |
|
model_dropdown.change( |
|
lambda model_name: on_model_change(model_name), |
|
inputs=model_dropdown, |
|
outputs=[current_model, image_input] |
|
) |
|
|
|
|
|
|
|
with gr.Column(): |
|
with gr.Tabs(): |
|
with gr.Tab("Code"): |
|
code_output = gr.Code( |
|
language="html", |
|
lines=25, |
|
interactive=True, |
|
label="Generated code" |
|
) |
|
with gr.Tab("Preview"): |
|
sandbox = gr.HTML(label="Live preview") |
|
with gr.Tab("History"): |
|
history_output = gr.Chatbot(show_label=False, height=400, type="messages") |
|
|
|
|
|
def handle_load_project(url): |
|
if not url.strip(): |
|
return gr.update(value="Please enter a URL.", visible=True) |
|
|
|
status, code = load_project_from_url(url) |
|
|
|
if code: |
|
|
|
is_valid, username, project_name = check_hf_space_url(url) |
|
space_info = f"{username}/{project_name}" if is_valid else "" |
|
|
|
|
|
|
|
loaded_history = [[f"Loaded project from {url}", code]] |
|
return [ |
|
gr.update(value=status, visible=True), |
|
gr.update(value=code, language="html"), |
|
gr.update(value=send_to_sandbox(code) if code.strip().startswith('<!DOCTYPE html>') or code.strip().startswith('<html') else "<div style='padding:1em;color:#888;text-align:center;'>Preview not available for this file type.</div>"), |
|
gr.update(value=""), |
|
loaded_history, |
|
history_to_chatbot_messages(loaded_history), |
|
gr.update(value=space_info, visible=True), |
|
gr.update(value="Update Existing Space", visible=True) |
|
] |
|
else: |
|
|
|
return [ |
|
gr.update(value=status, visible=True), |
|
gr.update(), |
|
gr.update(), |
|
gr.update(), |
|
[], |
|
[], |
|
gr.update(value="", visible=False), |
|
gr.update(value="🚀 Deploy App", visible=False) |
|
] |
|
|
|
|
|
def update_code_language(language): |
|
return gr.update(language=get_gradio_language(language)) |
|
|
|
def update_sdk_based_on_language(language): |
|
if language == "transformers.js": |
|
return gr.update(value="Transformers.js") |
|
elif language == "svelte": |
|
return gr.update(value="Svelte") |
|
elif language == "html": |
|
return gr.update(value="Static (HTML)") |
|
else: |
|
return gr.update(value="Gradio (Python)") |
|
|
|
language_dropdown.change(update_code_language, inputs=language_dropdown, outputs=code_output) |
|
language_dropdown.change(update_sdk_based_on_language, inputs=language_dropdown, outputs=sdk_dropdown) |
|
|
|
def preview_logic(code, language): |
|
if language == "html": |
|
return send_to_sandbox(code) |
|
elif language == "transformers.js": |
|
|
|
files = parse_transformers_js_output(code) |
|
if files['index.html']: |
|
return send_to_sandbox(files['index.html']) |
|
else: |
|
return "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>" |
|
elif language == "svelte": |
|
|
|
return "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your Svelte code and deploy it to see the result.</div>" |
|
else: |
|
return "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML. Please download your code using the download button above.</div>" |
|
|
|
def show_deploy_components(*args): |
|
return [gr.Textbox(visible=True), gr.Dropdown(visible=True), gr.Button(visible=True)] |
|
|
|
def hide_deploy_components(*args): |
|
return [gr.Textbox(visible=False), gr.Dropdown(visible=False), gr.Button(visible=False)] |
|
|
|
|
|
load_project_btn.click( |
|
handle_load_project, |
|
inputs=[load_project_url], |
|
outputs=[load_project_status, code_output, sandbox, load_project_url, history, history_output, space_name_input, deploy_btn] |
|
) |
|
|
|
btn.click( |
|
generation_code, |
|
inputs=[input, image_input, file_input, website_url_input, setting, history, current_model, search_toggle, language_dropdown, provider_state], |
|
outputs=[code_output, history, sandbox, history_output] |
|
).then( |
|
show_deploy_components, |
|
None, |
|
[space_name_input, sdk_dropdown, deploy_btn] |
|
) |
|
|
|
code_output.change(preview_logic, inputs=[code_output, language_dropdown], outputs=sandbox) |
|
language_dropdown.change(preview_logic, inputs=[code_output, language_dropdown], outputs=sandbox) |
|
clear_btn.click(clear_history, outputs=[history, history_output, file_input, website_url_input]) |
|
clear_btn.click(hide_deploy_components, None, [space_name_input, sdk_dropdown, deploy_btn]) |
|
|
|
clear_btn.click( |
|
lambda: [gr.update(value=""), gr.update(value="🚀 Deploy App")], |
|
outputs=[space_name_input, deploy_btn] |
|
) |
|
|
|
|
|
|
|
def deploy_to_user_space( |
|
code, |
|
space_name, |
|
sdk_name, |
|
profile: gr.OAuthProfile | None = None, |
|
token: gr.OAuthToken | None = None |
|
): |
|
import shutil |
|
if not code or not code.strip(): |
|
return gr.update(value="No code to deploy.", visible=True) |
|
if profile is None or token is None: |
|
return gr.update(value="Please log in with your Hugging Face account to deploy to your own Space. Otherwise, use the default deploy (opens in new tab).", visible=True) |
|
|
|
|
|
if not token.token or token.token == "hf_": |
|
return gr.update(value="Error: Invalid token. Please log in again with your Hugging Face account to get a valid write token.", visible=True) |
|
|
|
|
|
is_update = "/" in space_name.strip() |
|
if is_update: |
|
|
|
repo_id = space_name.strip() |
|
|
|
space_username = repo_id.split('/')[0] |
|
if space_username != profile.username: |
|
return gr.update(value=f"Error: You can only update your own spaces. This space belongs to {space_username}.", visible=True) |
|
|
|
|
|
try: |
|
api = HfApi(token=token.token) |
|
|
|
space_info = api.space_info(repo_id) |
|
if not space_info: |
|
return gr.update(value=f"Error: Could not access space {repo_id}. Please check your permissions.", visible=True) |
|
except Exception as e: |
|
return gr.update(value=f"Error: No write access to space {repo_id}. Please ensure you have the correct permissions. Error: {str(e)}", visible=True) |
|
else: |
|
|
|
username = profile.username |
|
repo_id = f"{username}/{space_name.strip()}" |
|
|
|
sdk_map = { |
|
"Gradio (Python)": "gradio", |
|
"Streamlit (Python)": "docker", |
|
"Static (HTML)": "static", |
|
"Transformers.js": "static", |
|
"Svelte": "static" |
|
} |
|
sdk = sdk_map.get(sdk_name, "gradio") |
|
|
|
|
|
api = HfApi(token=token.token) |
|
|
|
if not is_update and sdk != "docker" and sdk_name not in ["Transformers.js", "Svelte"]: |
|
try: |
|
api.create_repo( |
|
repo_id=repo_id, |
|
repo_type="space", |
|
space_sdk=sdk, |
|
exist_ok=True |
|
) |
|
except Exception as e: |
|
return gr.update(value=f"Error creating Space: {e}", visible=True) |
|
|
|
if sdk == "docker": |
|
try: |
|
|
|
if not is_update: |
|
|
|
from huggingface_hub import duplicate_space |
|
|
|
|
|
duplicated_repo = duplicate_space( |
|
from_id="streamlit/streamlit-template-space", |
|
to_id=space_name.strip(), |
|
token=token.token, |
|
exist_ok=True |
|
) |
|
|
|
|
|
import_statements = extract_import_statements(code) |
|
requirements_content = generate_requirements_txt_with_llm(import_statements) |
|
|
|
import tempfile |
|
|
|
|
|
try: |
|
with tempfile.NamedTemporaryFile("w", suffix=".txt", delete=False) as f: |
|
f.write(requirements_content) |
|
requirements_temp_path = f.name |
|
|
|
api.upload_file( |
|
path_or_fileobj=requirements_temp_path, |
|
path_in_repo="requirements.txt", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error uploading requirements.txt: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading requirements.txt: {e}", visible=True) |
|
finally: |
|
import os |
|
if 'requirements_temp_path' in locals(): |
|
os.unlink(requirements_temp_path) |
|
|
|
|
|
add_anycoder_tag_to_readme(api, repo_id) |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".py", delete=False) as f: |
|
f.write(code) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="src/streamlit_app.py", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
space_url = f"https://huggingface.co/spaces/{repo_id}" |
|
action_text = "Updated" if is_update else "Deployed" |
|
return gr.update(value=f"✅ {action_text}! [Open your Space here]({space_url})", visible=True) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading Streamlit app: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
except Exception as e: |
|
error_prefix = "Error duplicating Streamlit space" if not is_update else "Error updating Streamlit space" |
|
return gr.update(value=f"{error_prefix}: {e}", visible=True) |
|
|
|
elif sdk_name == "Transformers.js" and not is_update: |
|
try: |
|
|
|
from huggingface_hub import duplicate_space |
|
|
|
|
|
duplicated_repo = duplicate_space( |
|
from_id="static-templates/transformers.js", |
|
to_id=space_name.strip(), |
|
token=token.token, |
|
exist_ok=True |
|
) |
|
print("Duplicated repo result:", duplicated_repo, type(duplicated_repo)) |
|
|
|
files = parse_transformers_js_output(code) |
|
|
|
if not files['index.html'] or not files['index.js'] or not files['style.css']: |
|
return gr.update(value="Error: Could not parse transformers.js output. Please regenerate the code.", visible=True) |
|
|
|
|
|
import tempfile |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".html", delete=False) as f: |
|
f.write(files['index.html']) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="index.html", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading index.html: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".js", delete=False) as f: |
|
f.write(files['index.js']) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="index.js", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading index.js: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".css", delete=False) as f: |
|
f.write(files['style.css']) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="style.css", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading style.css: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
add_anycoder_tag_to_readme(api, repo_id) |
|
|
|
space_url = f"https://huggingface.co/spaces/{repo_id}" |
|
action_text = "Updated" if is_update else "Deployed" |
|
return gr.update(value=f"✅ {action_text}! [Open your Transformers.js Space here]({space_url})", visible=True) |
|
|
|
except Exception as e: |
|
|
|
error_msg = str(e) |
|
if "'url'" in error_msg or "RepoUrl" in error_msg: |
|
return gr.update(value=f"Error duplicating Transformers.js space: RepoUrl handling error. Please try again. Details: {error_msg}", visible=True) |
|
return gr.update(value=f"Error duplicating Transformers.js space: {error_msg}", visible=True) |
|
|
|
elif sdk_name == "Svelte" and not is_update: |
|
try: |
|
|
|
from huggingface_hub import duplicate_space |
|
|
|
|
|
duplicated_repo = duplicate_space( |
|
from_id="static-templates/svelte", |
|
to_id=repo_id, |
|
token=token.token, |
|
exist_ok=True |
|
) |
|
print("Duplicated Svelte repo result:", duplicated_repo, type(duplicated_repo)) |
|
|
|
|
|
|
|
try: |
|
duplicated_repo_str = str(duplicated_repo) |
|
|
|
if "/spaces/" in duplicated_repo_str: |
|
parts = duplicated_repo_str.split("/spaces/")[-1].split("/") |
|
if len(parts) >= 2: |
|
actual_repo_id = f"{parts[0]}/{parts[1]}" |
|
else: |
|
actual_repo_id = repo_id |
|
else: |
|
actual_repo_id = repo_id |
|
except Exception as e: |
|
print(f"Error extracting repo ID from duplicated_repo: {e}") |
|
actual_repo_id = repo_id |
|
print("Actual repo ID for Svelte uploads:", actual_repo_id) |
|
|
|
|
|
files = parse_svelte_output(code) |
|
|
|
if not files['src/App.svelte']: |
|
return gr.update(value="Error: Could not parse Svelte output. Please regenerate the code.", visible=True) |
|
|
|
|
|
import tempfile |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", suffix=".svelte", delete=False) as f: |
|
f.write(files['src/App.svelte']) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="src/App.svelte", |
|
repo_id=actual_repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {actual_repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading src/App.svelte: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
if files['src/app.css']: |
|
with tempfile.NamedTemporaryFile("w", suffix=".css", delete=False) as f: |
|
f.write(files['src/app.css']) |
|
temp_path = f.name |
|
|
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="src/app.css", |
|
repo_id=actual_repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {actual_repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading src/app.css: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
add_anycoder_tag_to_readme(api, actual_repo_id) |
|
|
|
|
|
space_url = f"https://huggingface.co/spaces/{actual_repo_id}" |
|
action_text = "Updated" if is_update else "Deployed" |
|
return gr.update(value=f"✅ {action_text}! [Open your Svelte Space here]({space_url})", visible=True) |
|
|
|
except Exception as e: |
|
|
|
error_msg = str(e) |
|
if "'url'" in error_msg or "RepoUrl" in error_msg: |
|
return gr.update(value=f"Error duplicating Svelte space: RepoUrl handling error. Please try again. Details: {error_msg}", visible=True) |
|
return gr.update(value=f"Error duplicating Svelte space: {error_msg}", visible=True) |
|
|
|
if sdk == "static": |
|
import time |
|
file_name = "index.html" |
|
|
|
|
|
add_anycoder_tag_to_readme(api, repo_id) |
|
|
|
|
|
max_attempts = 3 |
|
for attempt in range(max_attempts): |
|
import tempfile |
|
with tempfile.NamedTemporaryFile("w", suffix=".html", delete=False) as f: |
|
f.write(code) |
|
temp_path = f.name |
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo=file_name, |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
space_url = f"https://huggingface.co/spaces/{repo_id}" |
|
action_text = "Updated" if is_update else "Deployed" |
|
return gr.update(value=f"✅ {action_text}! [Open your Space here]({space_url})", visible=True) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
elif attempt < max_attempts - 1: |
|
time.sleep(2) |
|
else: |
|
return gr.update(value=f"Error uploading file after {max_attempts} attempts: {e}. Please check your permissions and try again.", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
else: |
|
|
|
import_statements = extract_import_statements(code) |
|
requirements_content = generate_requirements_txt_with_llm(import_statements) |
|
|
|
import tempfile |
|
|
|
|
|
try: |
|
with tempfile.NamedTemporaryFile("w", suffix=".txt", delete=False) as f: |
|
f.write(requirements_content) |
|
requirements_temp_path = f.name |
|
|
|
api.upload_file( |
|
path_or_fileobj=requirements_temp_path, |
|
path_in_repo="requirements.txt", |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error uploading requirements.txt: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading requirements.txt: {e}", visible=True) |
|
finally: |
|
import os |
|
if 'requirements_temp_path' in locals(): |
|
os.unlink(requirements_temp_path) |
|
|
|
|
|
add_anycoder_tag_to_readme(api, repo_id) |
|
|
|
|
|
file_name = "app.py" |
|
with tempfile.NamedTemporaryFile("w", suffix=f".{file_name.split('.')[-1]}", delete=False) as f: |
|
f.write(code) |
|
temp_path = f.name |
|
try: |
|
api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo=file_name, |
|
repo_id=repo_id, |
|
repo_type="space" |
|
) |
|
space_url = f"https://huggingface.co/spaces/{repo_id}" |
|
action_text = "Updated" if is_update else "Deployed" |
|
return gr.update(value=f"✅ {action_text}! [Open your Space here]({space_url})", visible=True) |
|
except Exception as e: |
|
error_msg = str(e) |
|
if "403 Forbidden" in error_msg and "write token" in error_msg: |
|
return gr.update(value=f"Error: Permission denied. Please ensure you have write access to {repo_id} and your token has the correct permissions.", visible=True) |
|
else: |
|
return gr.update(value=f"Error uploading file: {e}", visible=True) |
|
finally: |
|
import os |
|
os.unlink(temp_path) |
|
|
|
|
|
deploy_btn.click( |
|
deploy_to_user_space, |
|
inputs=[code_output, space_name_input, sdk_dropdown], |
|
outputs=deploy_status |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(api_open=False, default_concurrency_limit=20).launch(show_api=False, ssr_mode=True, mcp_server=False) |