|
import os |
|
import re |
|
from http import HTTPStatus |
|
from typing import Dict, List, Optional, Tuple |
|
import base64 |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
import modelscope_studio.components.base as ms |
|
import modelscope_studio.components.legacy as legacy |
|
import modelscope_studio.components.antd as antd |
|
|
|
|
|
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. |
|
When asked to create an application, you should: |
|
1. Understand the user's requirements |
|
2. Generate clean, working code |
|
3. Provide HTML output when appropriate for web applications |
|
4. Include necessary comments and documentation |
|
5. Ensure the code is functional and follows best practices |
|
|
|
If an image is provided, analyze it and use the visual information to better understand the user's requirements. |
|
|
|
Always respond with code that can be executed or rendered directly. |
|
|
|
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" |
|
|
|
|
|
AVAILABLE_MODELS = [ |
|
{ |
|
"name": "DeepSeek V3", |
|
"id": "deepseek-ai/DeepSeek-V3-0324", |
|
"description": "DeepSeek V3 model for code generation" |
|
}, |
|
{ |
|
"name": "DeepSeek R1", |
|
"id": "deepseek-ai/DeepSeek-R1-0528", |
|
"description": "DeepSeek R1 model for code generation" |
|
}, |
|
{ |
|
"name": "ERNIE-4.5-VL", |
|
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", |
|
"description": "ERNIE-4.5-VL model for multimodal code generation with image support" |
|
}, |
|
{ |
|
"name": "MiniMax M1", |
|
"id": "MiniMaxAI/MiniMax-M1-80k", |
|
"description": "MiniMax M1 model for code generation and general tasks" |
|
} |
|
] |
|
|
|
DEMO_LIST = [ |
|
{ |
|
"title": "Todo App", |
|
"description": "Create a simple todo application with add, delete, and mark as complete functionality" |
|
}, |
|
{ |
|
"title": "Calculator", |
|
"description": "Build a basic calculator with addition, subtraction, multiplication, and division" |
|
}, |
|
{ |
|
"title": "Weather Dashboard", |
|
"description": "Create a weather dashboard that displays current weather information" |
|
}, |
|
{ |
|
"title": "Chat Interface", |
|
"description": "Build a chat interface with message history and user input" |
|
}, |
|
{ |
|
"title": "E-commerce Product Card", |
|
"description": "Create a product card component for an e-commerce website" |
|
}, |
|
{ |
|
"title": "Login Form", |
|
"description": "Build a responsive login form with validation" |
|
}, |
|
{ |
|
"title": "Dashboard Layout", |
|
"description": "Create a dashboard layout with sidebar navigation and main content area" |
|
}, |
|
{ |
|
"title": "Data Table", |
|
"description": "Build a data table with sorting and filtering capabilities" |
|
}, |
|
{ |
|
"title": "Image Gallery", |
|
"description": "Create an image gallery with lightbox functionality and responsive grid layout" |
|
}, |
|
{ |
|
"title": "UI from Image", |
|
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" |
|
} |
|
] |
|
|
|
|
|
YOUR_API_TOKEN = os.getenv('HF_TOKEN') |
|
client = InferenceClient( |
|
provider="auto", |
|
api_key=YOUR_API_TOKEN, |
|
bill_to="huggingface" |
|
) |
|
|
|
History = List[Tuple[str, str]] |
|
Messages = List[Dict[str, str]] |
|
|
|
def history_to_messages(history: History, system: str) -> Messages: |
|
messages = [{'role': 'system', 'content': system}] |
|
for h in history: |
|
|
|
user_content = h[0] |
|
if isinstance(user_content, list): |
|
|
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
messages.append({'role': 'user', 'content': user_content}) |
|
messages.append({'role': 'assistant', 'content': h[1]}) |
|
return messages |
|
|
|
def messages_to_history(messages: Messages) -> Tuple[str, History]: |
|
assert messages[0]['role'] == 'system' |
|
history = [] |
|
for q, r in zip(messages[1::2], messages[2::2]): |
|
|
|
user_content = q['content'] |
|
if isinstance(user_content, list): |
|
text_content = "" |
|
for item in user_content: |
|
if isinstance(item, dict) and item.get("type") == "text": |
|
text_content += item.get("text", "") |
|
user_content = text_content if text_content else str(user_content) |
|
|
|
history.append([user_content, r['content']]) |
|
return history |
|
|
|
def remove_code_block(text): |
|
|
|
patterns = [ |
|
r'```(?:html|HTML)\n([\s\S]+?)\n```', |
|
r'```\n([\s\S]+?)\n```', |
|
r'```([\s\S]+?)```' |
|
] |
|
for pattern in patterns: |
|
match = re.search(pattern, text, re.DOTALL) |
|
if match: |
|
extracted = match.group(1).strip() |
|
return extracted |
|
|
|
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html'): |
|
return text.strip() |
|
return text.strip() |
|
|
|
def history_render(history: History): |
|
return gr.update(open=True), history |
|
|
|
def clear_history(): |
|
return [] |
|
|
|
def update_image_input_visibility(model): |
|
"""Update image input visibility based on selected model""" |
|
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" |
|
return gr.update(visible=is_ernie_vl) |
|
|
|
def process_image_for_model(image): |
|
"""Convert image to base64 for model input""" |
|
if image is None: |
|
return None |
|
|
|
|
|
import io |
|
import base64 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
|
|
buffer = io.BytesIO() |
|
image.save(buffer, format='PNG') |
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
return f"data:image/png;base64,{img_str}" |
|
|
|
def create_multimodal_message(text, image=None): |
|
"""Create a multimodal message with text and optional image""" |
|
if image is None: |
|
return {"role": "user", "content": text} |
|
|
|
content = [ |
|
{ |
|
"type": "text", |
|
"text": text |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": process_image_for_model(image) |
|
} |
|
} |
|
] |
|
|
|
return {"role": "user", "content": content} |
|
|
|
def send_to_sandbox(code): |
|
|
|
wrapped_code = f""" |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta charset=\"UTF-8\"> |
|
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> |
|
<script> |
|
// Safe localStorage polyfill |
|
const safeStorage = {{ |
|
_data: {{}}, |
|
getItem: function(key) {{ return this._data[key] || null; }}, |
|
setItem: function(key, value) {{ this._data[key] = value; }}, |
|
removeItem: function(key) {{ delete this._data[key]; }}, |
|
clear: function() {{ this._data = {{}}; }} |
|
}}; |
|
Object.defineProperty(window, 'localStorage', {{ |
|
value: safeStorage, |
|
writable: false |
|
}}); |
|
window.onerror = function(message, source, lineno, colno, error) {{ |
|
console.error('Error:', message); |
|
}}; |
|
</script> |
|
</head> |
|
<body> |
|
{code} |
|
</body> |
|
</html> |
|
""" |
|
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') |
|
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" |
|
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' |
|
return iframe |
|
|
|
def demo_card_click(e: gr.EventData): |
|
try: |
|
|
|
if hasattr(e, '_data') and e._data: |
|
|
|
if 'index' in e._data: |
|
index = e._data['index'] |
|
elif 'component' in e._data and 'index' in e._data['component']: |
|
index = e._data['component']['index'] |
|
elif 'target' in e._data and 'index' in e._data['target']: |
|
index = e._data['target']['index'] |
|
else: |
|
|
|
index = 0 |
|
else: |
|
index = 0 |
|
|
|
|
|
if index >= len(DEMO_LIST): |
|
index = 0 |
|
|
|
return DEMO_LIST[index]['description'] |
|
except (KeyError, IndexError, AttributeError) as e: |
|
|
|
return DEMO_LIST[0]['description'] |
|
|
|
|
|
with gr.Blocks(css_paths="app.css") as demo: |
|
history = gr.State([]) |
|
setting = gr.State({ |
|
"system": SystemPrompt, |
|
}) |
|
current_model = gr.State(AVAILABLE_MODELS[1]) |
|
|
|
with ms.Application() as app: |
|
with antd.ConfigProvider(): |
|
with antd.Row(gutter=[32, 12]) as layout: |
|
with antd.Col(span=24, md=8): |
|
with antd.Flex(vertical=True, gap="middle", wrap=True): |
|
header = gr.HTML(""" |
|
<div class="left_header"> |
|
<img src="https://huggingface.co/spaces/akhaliq/anycoder/resolve/main/Animated_Logo_Video_Ready.gif" width="200px" /> |
|
<h1>AnyCoder</h1> |
|
</div> |
|
""") |
|
current_model_display = gr.Markdown("**Current Model:** DeepSeek R1") |
|
input = antd.InputTextarea( |
|
size="large", allow_clear=True, placeholder="Please enter what kind of application you want") |
|
image_input = gr.Image(label="Upload an image (only for ERNIE-4.5-VL model)", visible=False) |
|
btn = antd.Button("send", type="primary", size="large") |
|
clear_btn = antd.Button("clear history", type="default", size="large") |
|
|
|
antd.Divider("examples") |
|
with antd.Flex(gap="small", wrap=True) as examples_flex: |
|
for i, demo_item in enumerate(DEMO_LIST): |
|
with antd.Card(hoverable=True, title=demo_item["title"]) as demoCard: |
|
antd.CardMeta(description=demo_item["description"]) |
|
demoCard.click(lambda e, idx=i: (DEMO_LIST[idx]['description'], None), outputs=[input, image_input]) |
|
|
|
antd.Divider("setting") |
|
with antd.Flex(gap="small", wrap=True) as setting_flex: |
|
settingPromptBtn = antd.Button( |
|
"⚙️ set system Prompt", type="default") |
|
modelBtn = antd.Button("🤖 switch model", type="default") |
|
codeBtn = antd.Button("🧑💻 view code", type="default") |
|
historyBtn = antd.Button("📜 history", type="default") |
|
|
|
with antd.Modal(open=False, title="set system Prompt", width="800px") as system_prompt_modal: |
|
systemPromptInput = antd.InputTextarea( |
|
SystemPrompt, auto_size=True) |
|
|
|
settingPromptBtn.click(lambda: gr.update( |
|
open=True), inputs=[], outputs=[system_prompt_modal]) |
|
system_prompt_modal.ok(lambda input: ({"system": input}, gr.update( |
|
open=False)), inputs=[systemPromptInput], outputs=[setting, system_prompt_modal]) |
|
system_prompt_modal.cancel(lambda: gr.update( |
|
open=False), outputs=[system_prompt_modal]) |
|
|
|
with antd.Modal(open=False, title="Select Model", width="600px") as model_modal: |
|
with antd.Flex(vertical=True, gap="middle"): |
|
for i, model in enumerate(AVAILABLE_MODELS): |
|
with antd.Card(hoverable=True, title=model["name"]) as modelCard: |
|
antd.CardMeta(description=model["description"]) |
|
modelCard.click(lambda m=model: (m, gr.update(open=False), f"**Current Model:** {m['name']}", update_image_input_visibility(m)), outputs=[current_model, model_modal, current_model_display, image_input]) |
|
|
|
modelBtn.click(lambda: gr.update(open=True), inputs=[], outputs=[model_modal]) |
|
|
|
with antd.Drawer(open=False, title="code", placement="left", width="750px") as code_drawer: |
|
code_output = legacy.Markdown() |
|
|
|
codeBtn.click(lambda: gr.update(open=True), |
|
inputs=[], outputs=[code_drawer]) |
|
code_drawer.close(lambda: gr.update( |
|
open=False), inputs=[], outputs=[code_drawer]) |
|
|
|
with antd.Drawer(open=False, title="history", placement="left", width="900px") as history_drawer: |
|
history_output = legacy.Chatbot(show_label=False, flushing=False, height=960, elem_classes="history_chatbot") |
|
|
|
historyBtn.click(history_render, inputs=[history], outputs=[history_drawer, history_output]) |
|
history_drawer.close(lambda: gr.update( |
|
open=False), inputs=[], outputs=[history_drawer]) |
|
|
|
with antd.Col(span=24, md=16): |
|
with ms.Div(elem_classes="right_panel"): |
|
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>') |
|
|
|
sandbox = gr.HTML(elem_classes="html_content") |
|
with antd.Tabs(active_key="empty", render_tab_bar="() => null") as state_tab: |
|
with antd.Tabs.Item(key="empty"): |
|
empty = antd.Empty(description="empty input", elem_classes="right_content") |
|
with antd.Tabs.Item(key="loading"): |
|
loading = antd.Spin(True, tip="coding...", size="large", elem_classes="right_content") |
|
|
|
def generation_code(query: Optional[str], image: Optional[gr.Image], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict): |
|
if query is None: |
|
query = '' |
|
if _history is None: |
|
_history = [] |
|
messages = history_to_messages(_history, _setting['system']) |
|
|
|
|
|
if image is not None: |
|
messages.append(create_multimodal_message(query, image)) |
|
else: |
|
messages.append({'role': 'user', 'content': query}) |
|
|
|
try: |
|
completion = client.chat.completions.create( |
|
model=_current_model["id"], |
|
messages=messages, |
|
stream=True, |
|
max_tokens=5000 |
|
) |
|
|
|
content = "" |
|
for chunk in completion: |
|
if chunk.choices[0].delta.content: |
|
content += chunk.choices[0].delta.content |
|
yield { |
|
code_output: content, |
|
state_tab: gr.update(active_key="loading"), |
|
code_drawer: gr.update(open=True), |
|
} |
|
|
|
|
|
_history = messages_to_history(messages + [{ |
|
'role': 'assistant', |
|
'content': content |
|
}]) |
|
|
|
yield { |
|
code_output: content, |
|
history: _history, |
|
sandbox: send_to_sandbox(remove_code_block(content)), |
|
state_tab: gr.update(active_key="render"), |
|
code_drawer: gr.update(open=False), |
|
} |
|
|
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
yield { |
|
code_output: error_message, |
|
state_tab: gr.update(active_key="empty"), |
|
code_drawer: gr.update(open=True), |
|
} |
|
|
|
btn.click( |
|
generation_code, |
|
inputs=[input, image_input, setting, history, current_model], |
|
outputs=[code_output, history, sandbox, state_tab, code_drawer] |
|
) |
|
|
|
clear_btn.click(clear_history, inputs=[], outputs=[history]) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(default_concurrency_limit=20).launch(ssr_mode=False) |