File size: 3,688 Bytes
8b1f7a0
3b3db42
8b1f7a0
 
 
 
 
98eb96a
8b1f7a0
 
 
5fe3b95
 
1ba1924
 
8b1f7a0
1ba1924
8b1f7a0
 
 
1ba1924
8b1f7a0
 
 
3a4f28e
8b1f7a0
3a4f28e
 
8b1f7a0
 
 
 
 
4f3c2a8
 
8b1f7a0
 
 
 
 
 
 
98eb96a
c875275
8b1f7a0
 
 
 
1ba1924
8b1f7a0
 
 
6066b5d
8b1f7a0
 
 
 
 
 
 
 
 
98eb96a
1ba1924
 
8b1f7a0
 
 
5dc0fc8
 
8b1f7a0
382809d
 
 
8b1f7a0
 
382809d
8b1f7a0
 
 
 
1ba1924
8b1f7a0
 
1ba1924
8b1f7a0
1ba1924
98eb96a
8b1f7a0
 
 
 
 
 
 
 
 
 
 
ceb2102
 
3b3db42
8b1f7a0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import json
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.utils import AutoEvalColumn, Tasks

@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    results: dict
    date: str = "" # submission date of request file

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        env_info = data.get("environment_info").get("parsed_arguments")

        full_model = env_info.get("model")
               
        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=full_model,
            full_model=full_model,
            results=results,
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.model.name: self.full_model,
            AutoEvalColumn.average.name: average,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        # if len(files) == 0 or any([not f.endswith(".json") for f in files]):
        #     continue

        # skip anything not results
        files = [f for f in files if (f.endswith("_evaluation_results.json"))]

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix("_evaluation_results.json"))
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        # eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results