Spaces:
Sleeping
Sleeping
File size: 7,989 Bytes
d2475c1 244b8f2 d2475c1 244b8f2 6683a3a 244b8f2 6c47e36 244b8f2 e5e09af d2475c1 244b8f2 e5e09af 244b8f2 d2475c1 244b8f2 e5e09af 244b8f2 d2475c1 244b8f2 d2475c1 244b8f2 d2475c1 244b8f2 e5e09af d2475c1 244b8f2 e5e09af 244b8f2 ad68cb4 244b8f2 e5e09af 244b8f2 e5e09af 244b8f2 d2475c1 e5e09af 244b8f2 d2475c1 244b8f2 e5e09af f1a9277 d2475c1 f1a9277 e5e09af d2475c1 f1a9277 ad68cb4 f1a9277 ad68cb4 f1a9277 6c47e36 f1a9277 e5e09af f1a9277 d2475c1 e5e09af f1a9277 e5e09af f1a9277 244b8f2 d2475c1 244b8f2 f1a9277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
"""Language Tutor Application
This script provides a Gradio-based web interface for a language tutoring assistant.
It uses OpenAI's GPT-4 model to generate language-specific responses and Speechify's
text-to-speech service to synthesize audio in multiple languages (Portuguese, French, Spanish).
The application supports running both locally and in Hugging Face Spaces environments.
"""
import os
import base64
import uuid
import gradio as gr
from openai import OpenAI
from speechify import Speechify
from dotenv import load_dotenv
# Detect Hugging Face environment
RUNNING_IN_SPACES = os.getenv("SYSTEM") == "spaces"
# Load API keys
# Load environment variables from .env when not running in Spaces
if not RUNNING_IN_SPACES:
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
speechify_api_key = os.getenv("SPEECHIFY_API_KEY")
# Sanity check (but don't print full keys)
print(f"β
OPENAI_API_KEY loaded: {'β
' if openai_api_key else 'β MISSING'}")
print(f"β
SPEECHIFY_API_KEY loaded: {'β
' if speechify_api_key else 'β MISSING'}")
# Initialize clients
openai_client = OpenAI(api_key=openai_api_key)
speechify_client = Speechify(token=speechify_api_key)
# Voice config
language_config = {
"Portuguese": {
"voice_id": "agueda",
"language": "pt-PT",
"model": "simba-multilingual",
"audio_format": "mp3"
},
"French": {
"voice_id": "leo",
"language": "fr-FR",
"model": "simba-multilingual",
"audio_format": "mp3"
},
"Spanish": {
"voice_id": "danna-sofia",
"language": "es-MX",
"model": "simba-multilingual",
"audio_format": "mp3"
},
"Korean": {
"voice_id": "yoon-jung",
"language": "ko-KR",
"model": "simba-multilingual",
"audio_format": "mp3"
},
}
def chat_and_speak(user_input, language_choice, history, show_translation):
# Step 0: Initialize response variables
gpt_response = ""
english_translation = ""
audio_output_path = None
try:
# Step 1: Input validation
if not user_input or not user_input.strip():
return None, ("", ""), "Please enter some text to process.", history
print(f"π§ User input: {user_input}")
print(f"π£οΈ Language choice: {language_choice}")
# Build messages with history for GPT interaction
system_message = f"You are a friendly {language_choice} language tutor. Respond only in {language_choice}."
messages = [{"role": "system", "content": system_message}]
if history:
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_input})
# Step 2: GPT interaction to generate response
completion = openai_client.chat.completions.create(
model="gpt-4",
messages=messages
)
gpt_response = completion.choices[0].message.content
print(f"π¬ GPT response: {gpt_response}")
# Step 2b: Get English translation
translation_prompt = f"Translate the following text to English:\n\n{gpt_response}"
translation_completion = openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "system", "content": "You translate text to English."},
{"role": "user", "content": translation_prompt}]
)
english_translation = translation_completion.choices[0].message.content
print(f"π English translation: {english_translation}")
# Step 3: Voice synthesis using Speechify
config = language_config.get(language_choice)
if not config:
error_msg = f"β οΈ Language '{language_choice}' not supported."
print(error_msg)
return None, (gpt_response, english_translation), f"{gpt_response}\n\n{error_msg}", history
tts_response = speechify_client.tts.audio.speech(
input=gpt_response,
voice_id=config["voice_id"],
model=config["model"],
audio_format=config["audio_format"]
)
if hasattr(tts_response, "audio_data") and isinstance(tts_response.audio_data, str) and tts_response.audio_data:
try:
audio_bytes = base64.b64decode(tts_response.audio_data)
output_dir = "/tmp" if RUNNING_IN_SPACES else "speech_files"
os.makedirs(output_dir, exist_ok=True)
audio_output_path = os.path.join(output_dir, f"speech_{uuid.uuid4().hex}.mp3")
with open(audio_output_path, "wb") as f:
f.write(audio_bytes)
except Exception as audio_err:
print(f"π₯ Error processing audio data: {audio_err}")
return None, (gpt_response, english_translation), f"{gpt_response}\n\nβ οΈ Error saving audio: {audio_err}", history
else:
print("β οΈ No audio data received from Speechify or audio_data is not a string.")
return None, (gpt_response, english_translation), f"{gpt_response}\n\nβ οΈ No audio data received from Speechify.", history
# Append new interaction to history
history = history or []
history.append((user_input, gpt_response))
return audio_output_path, (gpt_response, english_translation), history
except Exception as e:
# Step 4: Error handling
print(f"π₯ An unexpected error occurred: {e}")
error_message = f"β οΈ An unexpected error occurred: {e}"
if gpt_response:
return None, (gpt_response, english_translation), f"{gpt_response}\n\n{error_message}", history
return None, ("", ""), error_message, history
# Load custom CSS for UI styling
with open("custom.css") as f:
custom_css = f.read()
def update_display_text(chat_output_pair, show_translation):
original, translated = chat_output_pair or ("", "")
return translated if show_translation and translated else original
# Toggle translation display helper
def toggle_translation(chat_output_pair, show_translation):
return update_display_text(chat_output_pair, show_translation)
# Define Gradio UI layout
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
'<div class="custom-bar"><span class="custom-bar-title">Language Tutor</span></div>'
)
with gr.Column(elem_classes="main-card"):
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="Type in whatever language you prefer", placeholder="Type here...", lines=4)
language_choice = gr.Dropdown(
choices=["Portuguese", "French", "Spanish", "Korean"],
value="Portuguese",
label="Language"
)
show_translation = gr.Checkbox(label="Show English Translation", value=False)
submit_btn = gr.Button("Submit")
chat_history = gr.State([])
chat_output_pair = gr.State(("", "")) # (original, translation)
with gr.Column():
audio_output = gr.Audio(label="Audio Playback", type="filepath", autoplay=True)
gpt_output = gr.Textbox(label="The Response")
submit_btn.click(
fn=chat_and_speak,
inputs=[user_input, language_choice, chat_history, show_translation],
outputs=[audio_output, chat_output_pair, chat_history]
).then(
fn=update_display_text,
inputs=[chat_output_pair, show_translation],
outputs=gpt_output
)
show_translation.change(
fn=toggle_translation,
inputs=[chat_output_pair, show_translation],
outputs=gpt_output
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() |