File size: 11,974 Bytes
a8a9533
43606a3
f58e466
d13f9cf
b5ae065
5b1a9aa
b5ae065
b17a5c8
d13f9cf
a0ed974
144112e
20a343f
144112e
486ffa7
0c3e3b2
cdc7abc
20a343f
11983d2
 
bf75aa7
 
 
 
 
 
 
a68038a
bf75aa7
 
 
 
 
 
 
c087a6b
 
 
 
305114d
c087a6b
 
b1253fd
c087a6b
 
ff934bb
 
 
 
 
 
 
 
 
c087a6b
 
 
 
7451c63
c087a6b
 
 
 
 
 
 
 
b5ae065
c087a6b
 
9c8e5e0
b07f0b1
ebe2ba8
c087a6b
b5ae065
 
 
9c8e5e0
01b06a3
c087a6b
 
241ba68
aa59751
564e576
4a66e10
b17a5c8
5340bb9
 
bf75aa7
c087a6b
d13f9cf
a8a9533
c087a6b
144112e
 
 
 
 
 
 
 
 
07b0bcd
144112e
07b0bcd
 
 
 
 
 
 
 
 
 
 
 
486ffa7
dc98038
07b0bcd
 
 
144112e
ca2ac64
144112e
 
c03be55
 
 
 
 
 
 
642ce40
 
 
 
 
0c3e3b2
144112e
 
 
5340bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3e3b2
144112e
 
5340bb9
144112e
 
 
 
 
 
564e576
 
 
d947276
 
1fcfcd5
d947276
 
642ce40
d947276
 
 
 
 
 
 
 
 
564e576
d947276
 
 
 
 
 
564e576
d947276
 
 
 
 
 
1fcfcd5
d947276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5340bb9
d947276
 
 
 
564e576
 
 
0c3e3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144112e
 
c03be55
642ce40
144112e
 
 
 
 
 
 
 
 
 
 
c087a6b
 
144112e
c087a6b
 
 
 
 
 
b5ae065
 
 
 
 
 
a8a9533
 
b5ae065
 
 
 
 
 
 
 
 
 
 
b07f0b1
 
 
 
58c3781
 
61e5613
 
bf78ac3
 
b07f0b1
 
 
 
 
 
 
 
d5625b9
 
1c84463
 
987575f
 
70cdf7a
 
f1cd31d
 
b07f0b1
 
 
b5ae065
 
 
 
 
 
 
 
 
451ffc4
 
 
a1a6daf
451ffc4
 
 
 
 
 
 
cdc7abc
 
 
 
 
 
 
451ffc4
cdc7abc
 
564e576
b5ae065
cdc7abc
 
371a45e
388034d
371a45e
b5ae065
01b06a3
c202241
a8a9533
c202241
 
 
 
 
 
371a45e
c202241
 
a8a9533
c202241
 
 
 
 
 
 
c087a6b
d885316
b5ae065
a8a9533
a1a6daf
a8a9533
b5ae065
 
a1a6daf
c087a6b
 
4a66e10
 
cdc7abc
4a66e10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import { endpointTgi } from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";

import type { PreTrainedTokenizer } from "@huggingface/transformers";

import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";
import { ToolResultStatus, type ToolInput } from "$lib/types/Tool";
import { isHuggingChat } from "$lib/utils/isHuggingChat";

type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;

const reasoningSchema = z.union([
	z.object({
		type: z.literal("regex"), // everything is reasoning, extract the answer from the regex
		regex: z.string(),
	}),
	z.object({
		type: z.literal("tokens"), // use beginning and end tokens that define the reasoning portion of the answer
		beginToken: z.string(), // empty string means the model starts in reasoning mode
		endToken: z.string(),
	}),
	z.object({
		type: z.literal("summarize"), // everything is reasoning, summarize the answer
	}),
]);

const modelConfig = z.object({
	/** Used as an identifier in DB */
	id: z.string().optional(),
	/** Used to link to the model page, and for inference */
	name: z.string().default(""),
	displayName: z.string().min(1).optional(),
	description: z.string().min(1).optional(),
	logoUrl: z.string().url().optional(),
	websiteUrl: z.string().url().optional(),
	modelUrl: z.string().url().optional(),
	tokenizer: z
		.union([
			z.string(),
			z.object({
				tokenizerUrl: z.string().url(),
				tokenizerConfigUrl: z.string().url(),
			}),
		])
		.optional(),
	datasetName: z.string().min(1).optional(),
	datasetUrl: z.string().url().optional(),
	preprompt: z.string().default(""),
	prepromptUrl: z.string().url().optional(),
	chatPromptTemplate: z.string().optional(),
	promptExamples: z
		.array(
			z.object({
				title: z.string().min(1),
				prompt: z.string().min(1),
			})
		)
		.optional(),
	endpoints: z.array(endpointSchema).optional(),
	parameters: z
		.object({
			temperature: z.number().min(0).max(2).optional(),
			truncate: z.number().int().positive().optional(),
			max_new_tokens: z.number().int().positive().optional(),
			stop: z.array(z.string()).optional(),
			top_p: z.number().positive().optional(),
			top_k: z.number().positive().optional(),
			repetition_penalty: z.number().min(-2).max(2).optional(),
			presence_penalty: z.number().min(-2).max(2).optional(),
		})
		.passthrough()
		.optional(),
	multimodal: z.boolean().default(false),
	multimodalAcceptedMimetypes: z.array(z.string()).optional(),
	tools: z.boolean().default(false),
	unlisted: z.boolean().default(false),
	embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
	/** Used to enable/disable system prompt usage */
	systemRoleSupported: z.boolean().default(true),
	reasoning: reasoningSchema.optional(),
});

const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));

async function getChatPromptRender(
	m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
	if (m.chatPromptTemplate) {
		return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
	}
	let tokenizer: PreTrainedTokenizer;

	try {
		tokenizer = await getTokenizer(m.tokenizer ?? m.id ?? m.name);
	} catch (e) {
		// if fetching the tokenizer fails but it wasnt manually set, use the default template
		if (!m.tokenizer) {
			logger.warn(
				`No tokenizer found for model ${m.name}, using default template. Consider setting tokenizer manually or making sure the model is available on the hub.`,
				m
			);
			return compileTemplate<ChatTemplateInput>(
				"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
				m
			);
		}

		logger.error(
			e,
			`Failed to load tokenizer ${
				m.tokenizer ?? m.id ?? m.name
			} make sure the model is available on the hub and you have access to any gated models.`
		);
		process.exit();
	}

	const renderTemplate = ({
		messages,
		preprompt,
		tools,
		toolResults,
		continueMessage,
	}: ChatTemplateInput) => {
		let formattedMessages: {
			role: string;
			content: string;
			tool_calls?: { id: string; tool_call_id: string; output: string }[];
		}[] = messages.map((message) => ({
			content: message.content,
			role: message.from,
		}));

		if (!m.systemRoleSupported) {
			const firstSystemMessage = formattedMessages.find((msg) => msg.role === "system");
			formattedMessages = formattedMessages.filter((msg) => msg.role !== "system");

			if (
				firstSystemMessage &&
				formattedMessages.length > 0 &&
				formattedMessages[0].role === "user"
			) {
				formattedMessages[0].content =
					firstSystemMessage.content + "\n" + formattedMessages[0].content;
			}
		}

		if (preprompt && formattedMessages[0].role !== "system") {
			formattedMessages = [
				{
					role: m.systemRoleSupported ? "system" : "user",
					content: preprompt,
				},
				...formattedMessages,
			];
		}

		if (toolResults?.length) {
			// todo: should update the command r+ tokenizer to support system messages at any location
			// or use the `rag` mode without the citations
			const id = m.id ?? m.name;

			if (isHuggingChat && id.startsWith("CohereForAI")) {
				formattedMessages = [
					{
						role: "user",
						content:
							"\n\n<results>\n" +
							toolResults
								.flatMap((result, idx) => {
									if (result.status === ToolResultStatus.Error) {
										return (
											`Document: ${idx}\n` + `Tool "${result.call.name}" error\n` + result.message
										);
									}
									return (
										`Document: ${idx}\n` +
										result.outputs
											.flatMap((output) =>
												Object.entries(output).map(([title, text]) => `${title}\n${text}`)
											)
											.join("\n")
									);
								})
								.join("\n\n") +
							"\n</results>",
					},
					...formattedMessages,
				];
			} else if (isHuggingChat && id.startsWith("meta-llama")) {
				const results = toolResults.flatMap((result) => {
					if (result.status === ToolResultStatus.Error) {
						return [
							{
								tool_call_id: result.call.name,
								output: "Error: " + result.message,
							},
						];
					} else {
						return result.outputs.map((output) => ({
							tool_call_id: result.call.name,
							output: JSON.stringify(output),
						}));
					}
				});

				formattedMessages = [
					...formattedMessages,
					{
						role: "python",
						content: JSON.stringify(results),
					},
				];
			} else {
				formattedMessages = [
					...formattedMessages,
					{
						role: m.systemRoleSupported ? "system" : "user",
						content: JSON.stringify(toolResults),
					},
				];
			}
			tools = [];
		}

		const mappedTools =
			tools?.map((tool) => {
				const inputs: Record<
					string,
					{
						type: ToolInput["type"];
						description: string;
						required: boolean;
					}
				> = {};

				for (const value of tool.inputs) {
					if (value.paramType !== "fixed") {
						inputs[value.name] = {
							type: value.type,
							description: value.description ?? "",
							required: value.paramType === "required",
						};
					}
				}

				return {
					name: tool.name,
					description: tool.description,
					parameter_definitions: inputs,
				};
			}) ?? [];

		const output = tokenizer.apply_chat_template(formattedMessages, {
			tokenize: false,
			add_generation_prompt: !continueMessage,
			tools: mappedTools.length ? mappedTools : undefined,
		});

		if (typeof output !== "string") {
			throw new Error("Failed to apply chat template, the output is not a string");
		}

		return output;
	};
	return renderTemplate;
}

const processModel = async (m: z.infer<typeof modelConfig>) => ({
	...m,
	chatPromptRender: await getChatPromptRender(m),
	id: m.id || m.name,
	displayName: m.displayName || m.name,
	preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
	parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});

const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
	...m,
	getEndpoint: async (): Promise<Endpoint> => {
		if (!m.endpoints) {
			return endpointTgi({
				type: "tgi",
				url: `${env.HF_API_ROOT}/${m.name}`,
				accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
				weight: 1,
				model: m,
			});
		}
		const totalWeight = sum(m.endpoints.map((e) => e.weight));

		let random = Math.random() * totalWeight;

		for (const endpoint of m.endpoints) {
			if (random < endpoint.weight) {
				const args = { ...endpoint, model: m };

				switch (args.type) {
					case "tgi":
						return endpoints.tgi(args);
					case "anthropic":
						return endpoints.anthropic(args);
					case "anthropic-vertex":
						return endpoints.anthropicvertex(args);
					case "bedrock":
						return endpoints.bedrock(args);
					case "aws":
						return await endpoints.aws(args);
					case "openai":
						return await endpoints.openai(args);
					case "llamacpp":
						return endpoints.llamacpp(args);
					case "ollama":
						return endpoints.ollama(args);
					case "vertex":
						return await endpoints.vertex(args);
					case "genai":
						return await endpoints.genai(args);
					case "cloudflare":
						return await endpoints.cloudflare(args);
					case "cohere":
						return await endpoints.cohere(args);
					case "langserve":
						return await endpoints.langserve(args);
					default:
						// for legacy reason
						return endpoints.tgi(args);
				}
			}
			random -= endpoint.weight;
		}

		throw new Error(`Failed to select endpoint`);
	},
});

const inferenceApiIds = isHuggingChat
	? await fetch(
			"https://huggingface.co/api/models?pipeline_tag=text-generation&inference=warm&filter=conversational"
		)
			.then((r) => r.json())
			.then((json) => json.map((r: { id: string }) => r.id))
			.catch((err) => {
				logger.error(err, "Failed to fetch inference API ids");
				return [];
			})
	: [];

export const models = await Promise.all(
	modelsRaw.map((e) =>
		processModel(e)
			.then(addEndpoint)
			.then(async (m) => ({
				...m,
				hasInferenceAPI: inferenceApiIds.includes(m.id ?? m.name),
			}))
	)
);

export type ProcessedModel = (typeof models)[number];

// super ugly but not sure how to make typescript happier
export const validModelIdSchema = z.enum(models.map((m) => m.id) as [string, ...string[]]);

export const defaultModel = models[0];

// Models that have been deprecated
export const oldModels = env.OLD_MODELS
	? z
			.array(
				z.object({
					id: z.string().optional(),
					name: z.string().min(1),
					displayName: z.string().min(1).optional(),
					transferTo: validModelIdSchema.optional(),
				})
			)
			.parse(JSON5.parse(env.OLD_MODELS))
			.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
	: [];

export const validateModel = (_models: BackendModel[]) => {
	// Zod enum function requires 2 parameters
	return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};

// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself

export const smallModel = env.TASK_MODEL
	? ((models.find((m) => m.name === env.TASK_MODEL) ||
			(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
				addEndpoint(m)
			))) ??
		defaultModel)
	: defaultModel;

export type BackendModel = Optional<
	typeof defaultModel,
	"preprompt" | "parameters" | "multimodal" | "unlisted" | "tools" | "hasInferenceAPI"
>;