Spaces:
Paused
Anthropic Tool Support (#1594)
Browse files* support anthropic PDF beta
* upstream merge, remove commented out console log line
* Fixing type errors.
the anthropic API does not yet include a "DocumentBlock" for
support PDFs, so an extended type has been added to the endpoint.
* changed document processor to async (matching image processor)
* use the beta api types rather than custom extension
* rudimentary tool testing
* interim commit (tool re-passing, file handling)
* remove merge error
* tidy up, isolate beta classes to utils
* anthropic tool calling support.
* improve handling of directlyAnswer tool
* fix streaming
* slight tidy up to tools flow handling
* fix: dont pass tools in final generation, instead deduce tools from tool results
---------
Co-authored-by: Nathan Sarrazin <[email protected]>
|
@@ -3,9 +3,19 @@ import type { Endpoint } from "../endpoints";
|
|
| 3 |
import { env } from "$env/dynamic/private";
|
| 4 |
import type { TextGenerationStreamOutput } from "@huggingface/inference";
|
| 5 |
import { createImageProcessorOptionsValidator } from "../images";
|
| 6 |
-
import { endpointMessagesToAnthropicMessages } from "./utils";
|
| 7 |
import { createDocumentProcessorOptionsValidator } from "../document";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs";
|
|
|
|
| 9 |
|
| 10 |
export const endpointAnthropicParametersSchema = z.object({
|
| 11 |
weight: z.number().int().positive().default(1),
|
|
@@ -52,23 +62,41 @@ export async function endpointAnthropic(
|
|
| 52 |
defaultQuery,
|
| 53 |
});
|
| 54 |
|
| 55 |
-
return async ({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
let system = preprompt;
|
| 57 |
if (messages?.[0]?.from === "system") {
|
| 58 |
system = messages[0].content;
|
| 59 |
}
|
| 60 |
|
| 61 |
let tokenId = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
const parameters = { ...model.parameters, ...generateSettings };
|
| 64 |
|
| 65 |
return (async function* () {
|
| 66 |
const stream = anthropic.messages.stream({
|
| 67 |
model: model.id ?? model.name,
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
| 72 |
max_tokens: parameters?.max_new_tokens,
|
| 73 |
temperature: parameters?.temperature,
|
| 74 |
top_p: parameters?.top_p,
|
|
@@ -79,21 +107,40 @@ export async function endpointAnthropic(
|
|
| 79 |
while (true) {
|
| 80 |
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]);
|
| 81 |
|
| 82 |
-
// Stream end
|
| 83 |
if (result === undefined) {
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return;
|
| 95 |
}
|
| 96 |
-
|
| 97 |
// Text delta
|
| 98 |
yield {
|
| 99 |
token: {
|
|
@@ -109,3 +156,66 @@ export async function endpointAnthropic(
|
|
| 109 |
})();
|
| 110 |
};
|
| 111 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import { env } from "$env/dynamic/private";
|
| 4 |
import type { TextGenerationStreamOutput } from "@huggingface/inference";
|
| 5 |
import { createImageProcessorOptionsValidator } from "../images";
|
| 6 |
+
import { endpointMessagesToAnthropicMessages, addToolResults } from "./utils";
|
| 7 |
import { createDocumentProcessorOptionsValidator } from "../document";
|
| 8 |
+
import type {
|
| 9 |
+
Tool,
|
| 10 |
+
ToolCall,
|
| 11 |
+
ToolInput,
|
| 12 |
+
ToolInputFile,
|
| 13 |
+
ToolInputFixed,
|
| 14 |
+
ToolInputOptional,
|
| 15 |
+
} from "$lib/types/Tool";
|
| 16 |
+
import type Anthropic from "@anthropic-ai/sdk";
|
| 17 |
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs";
|
| 18 |
+
import directlyAnswer from "$lib/server/tools/directlyAnswer";
|
| 19 |
|
| 20 |
export const endpointAnthropicParametersSchema = z.object({
|
| 21 |
weight: z.number().int().positive().default(1),
|
|
|
|
| 62 |
defaultQuery,
|
| 63 |
});
|
| 64 |
|
| 65 |
+
return async ({
|
| 66 |
+
messages,
|
| 67 |
+
preprompt,
|
| 68 |
+
generateSettings,
|
| 69 |
+
conversationId,
|
| 70 |
+
tools = [],
|
| 71 |
+
toolResults = [],
|
| 72 |
+
}) => {
|
| 73 |
let system = preprompt;
|
| 74 |
if (messages?.[0]?.from === "system") {
|
| 75 |
system = messages[0].content;
|
| 76 |
}
|
| 77 |
|
| 78 |
let tokenId = 0;
|
| 79 |
+
if (tools.length === 0 && toolResults.length > 0) {
|
| 80 |
+
const toolNames = new Set(toolResults.map((tool) => tool.call.name));
|
| 81 |
+
tools = Array.from(toolNames).map((name) => ({
|
| 82 |
+
name,
|
| 83 |
+
description: "",
|
| 84 |
+
inputs: [],
|
| 85 |
+
})) as unknown as Tool[];
|
| 86 |
+
}
|
| 87 |
|
| 88 |
const parameters = { ...model.parameters, ...generateSettings };
|
| 89 |
|
| 90 |
return (async function* () {
|
| 91 |
const stream = anthropic.messages.stream({
|
| 92 |
model: model.id ?? model.name,
|
| 93 |
+
tools: createAnthropicTools(tools),
|
| 94 |
+
tool_choice:
|
| 95 |
+
tools.length > 0 ? { type: "auto", disable_parallel_tool_use: false } : undefined,
|
| 96 |
+
messages: addToolResults(
|
| 97 |
+
await endpointMessagesToAnthropicMessages(messages, multimodal, conversationId),
|
| 98 |
+
toolResults
|
| 99 |
+
) as MessageParam[],
|
| 100 |
max_tokens: parameters?.max_new_tokens,
|
| 101 |
temperature: parameters?.temperature,
|
| 102 |
top_p: parameters?.top_p,
|
|
|
|
| 107 |
while (true) {
|
| 108 |
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]);
|
| 109 |
|
|
|
|
| 110 |
if (result === undefined) {
|
| 111 |
+
if ("tool_use" === stream.receivedMessages[0].stop_reason) {
|
| 112 |
+
// this should really create a new "Assistant" message with the tool id in it.
|
| 113 |
+
const toolCalls: ToolCall[] = stream.receivedMessages[0].content
|
| 114 |
+
.filter(
|
| 115 |
+
(block): block is Anthropic.Messages.ContentBlock & { type: "tool_use" } =>
|
| 116 |
+
block.type === "tool_use"
|
| 117 |
+
)
|
| 118 |
+
.map((block) => ({
|
| 119 |
+
name: block.name,
|
| 120 |
+
parameters: block.input as Record<string, string | number | boolean>,
|
| 121 |
+
id: block.id,
|
| 122 |
+
}));
|
| 123 |
+
|
| 124 |
+
yield {
|
| 125 |
+
token: { id: tokenId, text: "", logprob: 0, special: false, toolCalls },
|
| 126 |
+
generated_text: null,
|
| 127 |
+
details: null,
|
| 128 |
+
};
|
| 129 |
+
} else {
|
| 130 |
+
yield {
|
| 131 |
+
token: {
|
| 132 |
+
id: tokenId++,
|
| 133 |
+
text: "",
|
| 134 |
+
logprob: 0,
|
| 135 |
+
special: true,
|
| 136 |
+
},
|
| 137 |
+
generated_text: await stream.finalText(),
|
| 138 |
+
details: null,
|
| 139 |
+
} satisfies TextGenerationStreamOutput;
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
return;
|
| 143 |
}
|
|
|
|
| 144 |
// Text delta
|
| 145 |
yield {
|
| 146 |
token: {
|
|
|
|
| 156 |
})();
|
| 157 |
};
|
| 158 |
}
|
| 159 |
+
|
| 160 |
+
function createAnthropicTools(tools: Tool[]): Anthropic.Messages.Tool[] {
|
| 161 |
+
return tools
|
| 162 |
+
.filter((tool) => tool.name !== directlyAnswer.name)
|
| 163 |
+
.map((tool) => {
|
| 164 |
+
const properties = tool.inputs.reduce((acc, input) => {
|
| 165 |
+
acc[input.name] = convertToolInputToJSONSchema(input);
|
| 166 |
+
return acc;
|
| 167 |
+
}, {} as Record<string, unknown>);
|
| 168 |
+
|
| 169 |
+
const required = tool.inputs
|
| 170 |
+
.filter((input) => input.paramType === "required")
|
| 171 |
+
.map((input) => input.name);
|
| 172 |
+
|
| 173 |
+
return {
|
| 174 |
+
name: tool.name,
|
| 175 |
+
description: tool.description,
|
| 176 |
+
input_schema: {
|
| 177 |
+
type: "object",
|
| 178 |
+
properties,
|
| 179 |
+
required: required.length > 0 ? required : undefined,
|
| 180 |
+
},
|
| 181 |
+
};
|
| 182 |
+
});
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
function convertToolInputToJSONSchema(input: ToolInput): Record<string, unknown> {
|
| 186 |
+
const baseSchema: Record<string, unknown> = {};
|
| 187 |
+
if ("description" in input) {
|
| 188 |
+
baseSchema["description"] = input.description || "";
|
| 189 |
+
}
|
| 190 |
+
switch (input.paramType) {
|
| 191 |
+
case "optional":
|
| 192 |
+
baseSchema["default"] = (input as ToolInputOptional).default;
|
| 193 |
+
break;
|
| 194 |
+
case "fixed":
|
| 195 |
+
baseSchema["const"] = (input as ToolInputFixed).value;
|
| 196 |
+
break;
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
if (input.type === "file") {
|
| 200 |
+
baseSchema["type"] = "string";
|
| 201 |
+
baseSchema["format"] = "binary";
|
| 202 |
+
baseSchema["mimeTypes"] = (input as ToolInputFile).mimeTypes;
|
| 203 |
+
} else {
|
| 204 |
+
switch (input.type) {
|
| 205 |
+
case "str":
|
| 206 |
+
baseSchema["type"] = "string";
|
| 207 |
+
break;
|
| 208 |
+
case "int":
|
| 209 |
+
baseSchema["type"] = "integer";
|
| 210 |
+
break;
|
| 211 |
+
case "float":
|
| 212 |
+
baseSchema["type"] = "number";
|
| 213 |
+
break;
|
| 214 |
+
case "bool":
|
| 215 |
+
baseSchema["type"] = "boolean";
|
| 216 |
+
break;
|
| 217 |
+
}
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
return baseSchema;
|
| 221 |
+
}
|
|
@@ -7,12 +7,16 @@ import type {
|
|
| 7 |
BetaMessageParam,
|
| 8 |
BetaBase64PDFBlock,
|
| 9 |
} from "@anthropic-ai/sdk/resources/beta/messages/messages.mjs";
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
export async function fileToImageBlock(
|
| 12 |
file: MessageFile,
|
| 13 |
opts: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">
|
| 14 |
): Promise<BetaImageBlockParam> {
|
| 15 |
const processor = makeImageProcessor(opts);
|
|
|
|
| 16 |
const { image, mime } = await processor(file);
|
| 17 |
|
| 18 |
return {
|
|
@@ -48,7 +52,8 @@ export async function endpointMessagesToAnthropicMessages(
|
|
| 48 |
multimodal: {
|
| 49 |
image: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">;
|
| 50 |
document?: FileProcessorOptions<"application/pdf">;
|
| 51 |
-
}
|
|
|
|
| 52 |
): Promise<BetaMessageParam[]> {
|
| 53 |
return await Promise.all(
|
| 54 |
messages
|
|
@@ -57,20 +62,59 @@ export async function endpointMessagesToAnthropicMessages(
|
|
| 57 |
return {
|
| 58 |
role: message.from,
|
| 59 |
content: [
|
| 60 |
-
...(
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
{ type: "text", text: message.content },
|
| 72 |
],
|
| 73 |
};
|
| 74 |
})
|
| 75 |
);
|
| 76 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
BetaMessageParam,
|
| 8 |
BetaBase64PDFBlock,
|
| 9 |
} from "@anthropic-ai/sdk/resources/beta/messages/messages.mjs";
|
| 10 |
+
import type { ToolResult } from "$lib/types/Tool";
|
| 11 |
+
import { downloadFile } from "$lib/server/files/downloadFile";
|
| 12 |
+
import type { ObjectId } from "mongodb";
|
| 13 |
|
| 14 |
export async function fileToImageBlock(
|
| 15 |
file: MessageFile,
|
| 16 |
opts: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">
|
| 17 |
): Promise<BetaImageBlockParam> {
|
| 18 |
const processor = makeImageProcessor(opts);
|
| 19 |
+
|
| 20 |
const { image, mime } = await processor(file);
|
| 21 |
|
| 22 |
return {
|
|
|
|
| 52 |
multimodal: {
|
| 53 |
image: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">;
|
| 54 |
document?: FileProcessorOptions<"application/pdf">;
|
| 55 |
+
},
|
| 56 |
+
conversationId?: ObjectId | undefined
|
| 57 |
): Promise<BetaMessageParam[]> {
|
| 58 |
return await Promise.all(
|
| 59 |
messages
|
|
|
|
| 62 |
return {
|
| 63 |
role: message.from,
|
| 64 |
content: [
|
| 65 |
+
...(message.from === "user"
|
| 66 |
+
? await Promise.all(
|
| 67 |
+
(message.files ?? []).map(async (file) => {
|
| 68 |
+
if (file.type === "hash" && conversationId) {
|
| 69 |
+
file = await downloadFile(file.value, conversationId);
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
if (file.mime.startsWith("image/")) {
|
| 73 |
+
return fileToImageBlock(file, multimodal.image);
|
| 74 |
+
} else if (file.mime === "application/pdf" && multimodal.document) {
|
| 75 |
+
return fileToDocumentBlock(file, multimodal.document);
|
| 76 |
+
} else {
|
| 77 |
+
throw new Error(`Unsupported file type: ${file.mime}`);
|
| 78 |
+
}
|
| 79 |
+
})
|
| 80 |
+
)
|
| 81 |
+
: []),
|
| 82 |
{ type: "text", text: message.content },
|
| 83 |
],
|
| 84 |
};
|
| 85 |
})
|
| 86 |
);
|
| 87 |
}
|
| 88 |
+
|
| 89 |
+
export function addToolResults(
|
| 90 |
+
messages: BetaMessageParam[],
|
| 91 |
+
toolResults: ToolResult[]
|
| 92 |
+
): BetaMessageParam[] {
|
| 93 |
+
const id = crypto.randomUUID();
|
| 94 |
+
if (toolResults.length === 0) {
|
| 95 |
+
return messages;
|
| 96 |
+
}
|
| 97 |
+
return [
|
| 98 |
+
...messages,
|
| 99 |
+
{
|
| 100 |
+
role: "assistant",
|
| 101 |
+
content: toolResults.map((result, index) => ({
|
| 102 |
+
type: "tool_use",
|
| 103 |
+
id: `tool_${index}_${id}`,
|
| 104 |
+
name: result.call.name,
|
| 105 |
+
input: result.call.parameters,
|
| 106 |
+
})),
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
role: "user",
|
| 110 |
+
content: toolResults.map((result, index) => ({
|
| 111 |
+
type: "tool_result",
|
| 112 |
+
tool_use_id: `tool_${index}_${id}`,
|
| 113 |
+
is_error: result.status === "error",
|
| 114 |
+
content: JSON.stringify(
|
| 115 |
+
result.status === "error" ? result.message : "outputs" in result ? result.outputs : ""
|
| 116 |
+
),
|
| 117 |
+
})),
|
| 118 |
+
},
|
| 119 |
+
];
|
| 120 |
+
}
|
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import type { ToolResult } from "$lib/types/Tool";
|
| 2 |
import {
|
| 3 |
MessageReasoningUpdateType,
|
| 4 |
MessageUpdateType,
|
|
@@ -16,7 +16,8 @@ type GenerateContext = Omit<TextGenerationContext, "messages"> & { messages: End
|
|
| 16 |
export async function* generate(
|
| 17 |
{ model, endpoint, conv, messages, assistant, isContinue, promptedAt }: GenerateContext,
|
| 18 |
toolResults: ToolResult[],
|
| 19 |
-
preprompt?: string
|
|
|
|
| 20 |
): AsyncIterable<MessageUpdate> {
|
| 21 |
// reasoning mode is false by default
|
| 22 |
let reasoning = false;
|
|
@@ -43,6 +44,7 @@ export async function* generate(
|
|
| 43 |
preprompt,
|
| 44 |
continueMessage: isContinue,
|
| 45 |
generateSettings: assistant?.generateSettings,
|
|
|
|
| 46 |
toolResults,
|
| 47 |
isMultimodal: model.multimodal,
|
| 48 |
conversationId: conv._id,
|
|
|
|
| 1 |
+
import type { ToolResult, Tool } from "$lib/types/Tool";
|
| 2 |
import {
|
| 3 |
MessageReasoningUpdateType,
|
| 4 |
MessageUpdateType,
|
|
|
|
| 16 |
export async function* generate(
|
| 17 |
{ model, endpoint, conv, messages, assistant, isContinue, promptedAt }: GenerateContext,
|
| 18 |
toolResults: ToolResult[],
|
| 19 |
+
preprompt?: string,
|
| 20 |
+
tools?: Tool[]
|
| 21 |
): AsyncIterable<MessageUpdate> {
|
| 22 |
// reasoning mode is false by default
|
| 23 |
let reasoning = false;
|
|
|
|
| 44 |
preprompt,
|
| 45 |
continueMessage: isContinue,
|
| 46 |
generateSettings: assistant?.generateSettings,
|
| 47 |
+
tools,
|
| 48 |
toolResults,
|
| 49 |
isMultimodal: model.multimodal,
|
| 50 |
conversationId: conv._id,
|
|
@@ -20,6 +20,7 @@ import { mergeAsyncGenerators } from "$lib/utils/mergeAsyncGenerators";
|
|
| 20 |
import type { TextGenerationContext } from "./types";
|
| 21 |
import type { ToolResult } from "$lib/types/Tool";
|
| 22 |
import { toolHasName } from "../tools/utils";
|
|
|
|
| 23 |
|
| 24 |
async function* keepAlive(done: AbortSignal): AsyncGenerator<MessageUpdate, undefined, undefined> {
|
| 25 |
while (!done.aborted) {
|
|
@@ -73,11 +74,13 @@ async function* textGenerationWithoutTitle(
|
|
| 73 |
}
|
| 74 |
|
| 75 |
let toolResults: ToolResult[] = [];
|
|
|
|
| 76 |
|
| 77 |
-
if (
|
| 78 |
-
const
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
const processedMessages = await preprocessMessages(messages, webSearchResult, convId);
|
|
|
|
| 20 |
import type { TextGenerationContext } from "./types";
|
| 21 |
import type { ToolResult } from "$lib/types/Tool";
|
| 22 |
import { toolHasName } from "../tools/utils";
|
| 23 |
+
import directlyAnswer from "../tools/directlyAnswer";
|
| 24 |
|
| 25 |
async function* keepAlive(done: AbortSignal): AsyncGenerator<MessageUpdate, undefined, undefined> {
|
| 26 |
while (!done.aborted) {
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
let toolResults: ToolResult[] = [];
|
| 77 |
+
let tools = model.tools ? await getTools(toolsPreference, ctx.assistant) : undefined;
|
| 78 |
|
| 79 |
+
if (tools) {
|
| 80 |
+
const toolCallsRequired = tools.some((tool) => !toolHasName(directlyAnswer.name, tool));
|
| 81 |
+
if (toolCallsRequired) {
|
| 82 |
+
toolResults = yield* runTools(ctx, tools, preprompt);
|
| 83 |
+
} else tools = undefined;
|
| 84 |
}
|
| 85 |
|
| 86 |
const processedMessages = await preprocessMessages(messages, webSearchResult, convId);
|
|
@@ -213,7 +213,7 @@ export async function* runTools(
|
|
| 213 |
}
|
| 214 |
|
| 215 |
// if we dont see a tool call in the first 25 chars, something is going wrong and we abort
|
| 216 |
-
if (rawText.length >
|
| 217 |
return [];
|
| 218 |
}
|
| 219 |
|
|
|
|
| 213 |
}
|
| 214 |
|
| 215 |
// if we dont see a tool call in the first 25 chars, something is going wrong and we abort
|
| 216 |
+
if (rawText.length > 100 && !(rawText.includes("```json") || rawText.includes("{"))) {
|
| 217 |
return [];
|
| 218 |
}
|
| 219 |
|