File size: 15,614 Bytes
a95b710
 
908a00f
 
a95b710
908a00f
a95b710
 
9b489f6
 
a95b710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13753a4
 
 
 
 
 
 
 
 
 
 
a95b710
13753a4
a95b710
 
 
 
 
13753a4
 
a95b710
908a00f
a95b710
13753a4
a95b710
 
13753a4
908a00f
a95b710
 
 
 
 
 
 
 
 
908a00f
 
 
 
 
 
a95b710
 
 
 
 
 
 
 
 
 
 
 
 
908a00f
a95b710
13753a4
 
908a00f
 
 
 
 
 
 
 
 
 
 
 
 
13753a4
908a00f
a95b710
908a00f
 
 
 
 
 
 
 
 
 
 
a95b710
908a00f
a95b710
 
 
908a00f
 
 
a95b710
908a00f
a95b710
 
 
908a00f
a95b710
13753a4
908a00f
a95b710
 
 
 
13753a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95b710
13753a4
 
 
 
 
 
 
 
 
 
a95b710
908a00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13753a4
908a00f
13753a4
908a00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95b710
 
 
 
 
 
 
 
 
 
908a00f
a95b710
908a00f
 
 
 
 
 
 
 
a95b710
 
 
908a00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95b710
 
 
 
 
 
 
908a00f
a95b710
908a00f
 
 
 
 
 
a95b710
 
 
908a00f
 
 
 
 
 
a95b710
 
 
 
 
 
 
 
 
 
908a00f
 
 
 
 
 
 
 
 
 
13753a4
908a00f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import pandas as pd
import gradio as gr
from transformers import pipeline
import nltk
from retrieval import retrieve_from_pdf
import os

if gr.NO_RELOAD:
    # Resource punkt_tab not found during application startup on HF spaces
    nltk.download("punkt_tab")

    # Keep track of the model name in a global variable so correct model is shown after page refresh
    # https://github.com/gradio-app/gradio/issues/3173
    MODEL_NAME = "jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint"
    pipe = pipeline(
        "text-classification",
        model=MODEL_NAME,
    )


def prediction_to_df(prediction=None):
    """
    Convert prediction text to DataFrame for barplot
    """
    if prediction is None or prediction == "":
        # Show an empty plot for app initialization or auto-reload
        prediction = {"SUPPORT": 0, "NEI": 0, "REFUTE": 0}
    elif "Model" in prediction:
        # Show full-height bars when the model is changed
        prediction = {"SUPPORT": 1, "NEI": 1, "REFUTE": 1}
    else:
        # Convert predictions text to dictionary
        prediction = eval(prediction)
        # Rename dictionary keys to use consistent labels across models
        prediction = {
            ("SUPPORT" if k == "entailment" else k): v for k, v in prediction.items()
        }
        prediction = {
            ("NEI" if k == "neutral" else k): v for k, v in prediction.items()
        }
        prediction = {
            ("REFUTE" if k == "contradiction" else k): v for k, v in prediction.items()
        }
        # Use custom order for labels (pipe() returns labels in descending order of softmax score)
        labels = ["SUPPORT", "NEI", "REFUTE"]
        prediction = {k: prediction[k] for k in labels}
    # Convert dictionary to DataFrame with one column (Probability)
    df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
    # Move the index to the Class column
    return df.reset_index(names="Class")


# Setup theme without background image
my_theme = gr.Theme.from_hub("NoCrypt/miku")
my_theme.set(body_background_fill="#FFFFFF", body_background_fill_dark="#000000")

# Custom CSS to center content
custom_css = """
.center-content {
    text-align: center;
    display:block;
}
"""

# Define the HTML for Font Awesome
font_awesome_html = '<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css" rel="stylesheet">'

# Gradio interface setup
with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:

    # Layout
    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                gr.Markdown("# AI4citations")
                gr.Markdown("## *AI-powered scientific citation verification*")
            claim = gr.Textbox(
                label="1. Claim",
                info="aka hypothesis",
                placeholder="Input claim",
            )
            with gr.Row():
                with gr.Accordion("Get Evidence from PDF"):
                    pdf_file = gr.File(label="Upload PDF", type="filepath", height=120)
                    get_evidence = gr.Button(value="Get Evidence")
                    top_k = gr.Slider(
                        1,
                        10,
                        value=5,
                        step=1,
                        interactive=True,
                        label="Top k sentences",
                    )
                evidence = gr.TextArea(
                    label="2. Evidence",
                    info="aka premise",
                    placeholder="Input evidence or use Get Evidence from PDF",
                )
            submit = gr.Button("3. Submit", visible=False)

        with gr.Column(scale=2):
            # Keep the prediction textbox hidden
            with gr.Accordion(visible=False):
                prediction = gr.Textbox(label="Prediction")
            barplot = gr.BarPlot(
                prediction_to_df,
                x="Class",
                y="Probability",
                color="Class",
                color_map={"SUPPORT": "green", "NEI": "#888888", "REFUTE": "#FF8888"},
                inputs=prediction,
                y_lim=([0, 1]),
                visible=False,
            )
            label = gr.Label(label="Results")
            with gr.Accordion("Settings"):
                # Create dropdown menu to select the model
                dropdown = gr.Dropdown(
                    choices=[
                        # TODO: For bert-base-uncased, how can we set num_labels = 2 in HF pipeline?
                        # (num_labels is available in AutoModelForSequenceClassification.from_pretrained)
                        # "bert-base-uncased",
                        "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
                        "jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint",
                    ],
                    value=MODEL_NAME,
                    label="Model",
                )
                radio = gr.Radio(["label", "barplot"], value="label", label="Results")
            with gr.Accordion("Examples"):
                gr.Markdown("*Examples are run when clicked*"),
                with gr.Row():
                    support_example = gr.Examples(
                        examples="examples/Support",
                        label="Support",
                        inputs=[claim, evidence],
                        example_labels=pd.read_csv("examples/Support/log.csv")[
                            "label"
                        ].tolist(),
                    )
                    nei_example = gr.Examples(
                        examples="examples/NEI",
                        label="NEI",
                        inputs=[claim, evidence],
                        example_labels=pd.read_csv("examples/NEI/log.csv")[
                            "label"
                        ].tolist(),
                    )
                    refute_example = gr.Examples(
                        examples="examples/Refute",
                        label="Refute",
                        inputs=[claim, evidence],
                        example_labels=pd.read_csv("examples/Refute/log.csv")[
                            "label"
                        ].tolist(),
                    )
                retrieval_example = gr.Examples(
                    examples="examples/retrieval",
                    label="Get Evidence from PDF",
                    inputs=[pdf_file, claim],
                    example_labels=pd.read_csv("examples/retrieval/log.csv")[
                        "label"
                    ].tolist(),
                )

    # Sources and acknowledgments

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(
                        """
                    ### Usage:

                    1. Input a **Claim**
                    2. Input **Evidence** statements
                    - *Optional:* Upload a PDF and click Get Evidence
                    """
                    )
                with gr.Column(scale=2):
                    gr.Markdown(
                        """
                    ### To make predictions:

                    - Hit 'Enter' in the **Claim** text box,
                    - Hit 'Shift-Enter' in the **Evidence** text box, or
                    - Click Get Evidence
                    """
                    )

        with gr.Column(scale=2, elem_classes=["center-content"]):
            with gr.Accordion("Sources", open=False):
                gr.Markdown(
                    """
                #### *Capstone project*
                - <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
                - <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
                """
                )
                gr.Markdown(
                    """
                #### *Models*
                - <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
                - <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
                """
                )
                gr.Markdown(
                    """
                #### *Datasets for fine-tuning*
                - <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
                - <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
                """
                )
                gr.Markdown(
                    """
                #### *Other sources*
                - <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
                - <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [nyu-mll/multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli/viewer/default/train?row=37&views%5B%5D=train) (MNLI example)
                - <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (get evidence examples)
                - <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [NoCrypt/miku](https://huggingface.co/spaces/NoCrypt/miku) (theme)
                """
                )

    # Functions

    def query_model(claim, evidence):
        """
        Get prediction for a claim and evidence pair
        """
        prediction = {
            # Send a dictionary containing {"text", "text_pair"} keys; use top_k=3 to get results for all classes
            #   https://huggingface.co/docs/transformers/v4.51.3/en/main_classes/pipelines#transformers.TextClassificationPipeline.__call__.inputs
            # Put evidence before claim
            #   https://github.com/jedick/MLE-capstone-project
            # Output {label: confidence} dictionary format as expected by gr.Label()
            #   https://github.com/gradio-app/gradio/issues/11170
            d["label"]: d["score"]
            for d in pipe({"text": evidence, "text_pair": claim}, top_k=3)
        }
        # Return two instances of the prediction to send to different Gradio components
        return prediction, prediction

    def select_model(model_name):
        """
        Select the specified model
        """
        global pipe, MODEL_NAME
        MODEL_NAME = model_name
        pipe = pipeline(
            "text-classification",
            model=MODEL_NAME,
        )

    def change_visualization(choice):
        if choice == "barplot":
            barplot = gr.update(visible=True)
            label = gr.update(visible=False)
        elif choice == "label":
            barplot = gr.update(visible=False)
            label = gr.update(visible=True)
        return barplot, label

    # From gradio/client/python/gradio_client/utils.py
    def is_http_url_like(possible_url) -> bool:
        """
        Check if the given value is a string that looks like an HTTP(S) URL.
        """
        if not isinstance(possible_url, str):
            return False
        return possible_url.startswith(("http://", "https://"))

    def select_example(value, evt: gr.EventData):
        # Get the PDF file and claim from the event data
        claim, evidence = value[1]
        # Add the directory path
        return claim, evidence

    def select_retrieval_example(value, evt: gr.EventData):
        """
        Get the PDF file and claim from the event data.
        """
        pdf_file, claim = value[1]
        # Add the directory path
        if not is_http_url_like(pdf_file):
            pdf_file = f"examples/retrieval/{pdf_file}"
        return pdf_file, claim

    # Event listeners

    # Click the submit button or press Enter to submit
    gr.on(
        triggers=[claim.submit, evidence.submit, submit.click],
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
    )

    # Get evidence from PDF and run the model
    gr.on(
        triggers=[get_evidence.click],
        fn=retrieve_from_pdf,
        inputs=[pdf_file, claim, top_k],
        outputs=evidence,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )

    # Handle "Support" examples
    gr.on(
        triggers=[support_example.dataset.select],
        fn=select_example,
        inputs=support_example.dataset,
        outputs=[claim, evidence],
        api_name=False,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )

    # Handle "NEI" examples
    gr.on(
        triggers=[nei_example.dataset.select],
        fn=select_example,
        inputs=nei_example.dataset,
        outputs=[claim, evidence],
        api_name=False,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )

    # Handle "Refute" examples
    gr.on(
        triggers=[refute_example.dataset.select],
        fn=select_example,
        inputs=refute_example.dataset,
        outputs=[claim, evidence],
        api_name=False,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )

    # Handle evidence retrieval examples: get evidence from PDF and run the model
    gr.on(
        triggers=[retrieval_example.dataset.select],
        fn=select_retrieval_example,
        inputs=retrieval_example.dataset,
        outputs=[pdf_file, claim],
        api_name=False,
    ).then(
        fn=retrieve_from_pdf,
        inputs=[pdf_file, claim, top_k],
        outputs=evidence,
        api_name=False,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )

    # Change visualization
    radio.change(
        fn=change_visualization,
        inputs=radio,
        outputs=[barplot, label],
        api_name=False,
    )

    # Clear the previous predictions when the model is changed
    gr.on(
        triggers=[dropdown.select],
        fn=lambda: "Model changed! Waiting for updated predictions...",
        outputs=[prediction],
        api_name=False,
    )

    # Change the model the update the predictions
    dropdown.change(
        fn=select_model,
        inputs=dropdown,
    ).then(
        fn=query_model,
        inputs=[claim, evidence],
        outputs=[prediction, label],
        api_name=False,
    )


if __name__ == "__main__":
    # allowed_paths is needed to upload PDFs from specific example directory
    demo.launch(allowed_paths=[f"{os.getcwd()}/examples/retrieval"])