Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,614 Bytes
a95b710 908a00f a95b710 908a00f a95b710 9b489f6 a95b710 13753a4 a95b710 13753a4 a95b710 13753a4 a95b710 908a00f a95b710 13753a4 a95b710 13753a4 908a00f a95b710 908a00f a95b710 908a00f a95b710 13753a4 908a00f 13753a4 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 13753a4 908a00f a95b710 13753a4 a95b710 13753a4 a95b710 908a00f 13753a4 908a00f 13753a4 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f a95b710 908a00f 13753a4 908a00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import pandas as pd
import gradio as gr
from transformers import pipeline
import nltk
from retrieval import retrieve_from_pdf
import os
if gr.NO_RELOAD:
# Resource punkt_tab not found during application startup on HF spaces
nltk.download("punkt_tab")
# Keep track of the model name in a global variable so correct model is shown after page refresh
# https://github.com/gradio-app/gradio/issues/3173
MODEL_NAME = "jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint"
pipe = pipeline(
"text-classification",
model=MODEL_NAME,
)
def prediction_to_df(prediction=None):
"""
Convert prediction text to DataFrame for barplot
"""
if prediction is None or prediction == "":
# Show an empty plot for app initialization or auto-reload
prediction = {"SUPPORT": 0, "NEI": 0, "REFUTE": 0}
elif "Model" in prediction:
# Show full-height bars when the model is changed
prediction = {"SUPPORT": 1, "NEI": 1, "REFUTE": 1}
else:
# Convert predictions text to dictionary
prediction = eval(prediction)
# Rename dictionary keys to use consistent labels across models
prediction = {
("SUPPORT" if k == "entailment" else k): v for k, v in prediction.items()
}
prediction = {
("NEI" if k == "neutral" else k): v for k, v in prediction.items()
}
prediction = {
("REFUTE" if k == "contradiction" else k): v for k, v in prediction.items()
}
# Use custom order for labels (pipe() returns labels in descending order of softmax score)
labels = ["SUPPORT", "NEI", "REFUTE"]
prediction = {k: prediction[k] for k in labels}
# Convert dictionary to DataFrame with one column (Probability)
df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
# Move the index to the Class column
return df.reset_index(names="Class")
# Setup theme without background image
my_theme = gr.Theme.from_hub("NoCrypt/miku")
my_theme.set(body_background_fill="#FFFFFF", body_background_fill_dark="#000000")
# Custom CSS to center content
custom_css = """
.center-content {
text-align: center;
display:block;
}
"""
# Define the HTML for Font Awesome
font_awesome_html = '<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css" rel="stylesheet">'
# Gradio interface setup
with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
# Layout
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
gr.Markdown("# AI4citations")
gr.Markdown("## *AI-powered scientific citation verification*")
claim = gr.Textbox(
label="1. Claim",
info="aka hypothesis",
placeholder="Input claim",
)
with gr.Row():
with gr.Accordion("Get Evidence from PDF"):
pdf_file = gr.File(label="Upload PDF", type="filepath", height=120)
get_evidence = gr.Button(value="Get Evidence")
top_k = gr.Slider(
1,
10,
value=5,
step=1,
interactive=True,
label="Top k sentences",
)
evidence = gr.TextArea(
label="2. Evidence",
info="aka premise",
placeholder="Input evidence or use Get Evidence from PDF",
)
submit = gr.Button("3. Submit", visible=False)
with gr.Column(scale=2):
# Keep the prediction textbox hidden
with gr.Accordion(visible=False):
prediction = gr.Textbox(label="Prediction")
barplot = gr.BarPlot(
prediction_to_df,
x="Class",
y="Probability",
color="Class",
color_map={"SUPPORT": "green", "NEI": "#888888", "REFUTE": "#FF8888"},
inputs=prediction,
y_lim=([0, 1]),
visible=False,
)
label = gr.Label(label="Results")
with gr.Accordion("Settings"):
# Create dropdown menu to select the model
dropdown = gr.Dropdown(
choices=[
# TODO: For bert-base-uncased, how can we set num_labels = 2 in HF pipeline?
# (num_labels is available in AutoModelForSequenceClassification.from_pretrained)
# "bert-base-uncased",
"MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
"jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint",
],
value=MODEL_NAME,
label="Model",
)
radio = gr.Radio(["label", "barplot"], value="label", label="Results")
with gr.Accordion("Examples"):
gr.Markdown("*Examples are run when clicked*"),
with gr.Row():
support_example = gr.Examples(
examples="examples/Support",
label="Support",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/Support/log.csv")[
"label"
].tolist(),
)
nei_example = gr.Examples(
examples="examples/NEI",
label="NEI",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/NEI/log.csv")[
"label"
].tolist(),
)
refute_example = gr.Examples(
examples="examples/Refute",
label="Refute",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/Refute/log.csv")[
"label"
].tolist(),
)
retrieval_example = gr.Examples(
examples="examples/retrieval",
label="Get Evidence from PDF",
inputs=[pdf_file, claim],
example_labels=pd.read_csv("examples/retrieval/log.csv")[
"label"
].tolist(),
)
# Sources and acknowledgments
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### Usage:
1. Input a **Claim**
2. Input **Evidence** statements
- *Optional:* Upload a PDF and click Get Evidence
"""
)
with gr.Column(scale=2):
gr.Markdown(
"""
### To make predictions:
- Hit 'Enter' in the **Claim** text box,
- Hit 'Shift-Enter' in the **Evidence** text box, or
- Click Get Evidence
"""
)
with gr.Column(scale=2, elem_classes=["center-content"]):
with gr.Accordion("Sources", open=False):
gr.Markdown(
"""
#### *Capstone project*
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
"""
)
gr.Markdown(
"""
#### *Models*
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
"""
)
gr.Markdown(
"""
#### *Datasets for fine-tuning*
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
"""
)
gr.Markdown(
"""
#### *Other sources*
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [nyu-mll/multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli/viewer/default/train?row=37&views%5B%5D=train) (MNLI example)
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (get evidence examples)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [NoCrypt/miku](https://huggingface.co/spaces/NoCrypt/miku) (theme)
"""
)
# Functions
def query_model(claim, evidence):
"""
Get prediction for a claim and evidence pair
"""
prediction = {
# Send a dictionary containing {"text", "text_pair"} keys; use top_k=3 to get results for all classes
# https://huggingface.co/docs/transformers/v4.51.3/en/main_classes/pipelines#transformers.TextClassificationPipeline.__call__.inputs
# Put evidence before claim
# https://github.com/jedick/MLE-capstone-project
# Output {label: confidence} dictionary format as expected by gr.Label()
# https://github.com/gradio-app/gradio/issues/11170
d["label"]: d["score"]
for d in pipe({"text": evidence, "text_pair": claim}, top_k=3)
}
# Return two instances of the prediction to send to different Gradio components
return prediction, prediction
def select_model(model_name):
"""
Select the specified model
"""
global pipe, MODEL_NAME
MODEL_NAME = model_name
pipe = pipeline(
"text-classification",
model=MODEL_NAME,
)
def change_visualization(choice):
if choice == "barplot":
barplot = gr.update(visible=True)
label = gr.update(visible=False)
elif choice == "label":
barplot = gr.update(visible=False)
label = gr.update(visible=True)
return barplot, label
# From gradio/client/python/gradio_client/utils.py
def is_http_url_like(possible_url) -> bool:
"""
Check if the given value is a string that looks like an HTTP(S) URL.
"""
if not isinstance(possible_url, str):
return False
return possible_url.startswith(("http://", "https://"))
def select_example(value, evt: gr.EventData):
# Get the PDF file and claim from the event data
claim, evidence = value[1]
# Add the directory path
return claim, evidence
def select_retrieval_example(value, evt: gr.EventData):
"""
Get the PDF file and claim from the event data.
"""
pdf_file, claim = value[1]
# Add the directory path
if not is_http_url_like(pdf_file):
pdf_file = f"examples/retrieval/{pdf_file}"
return pdf_file, claim
# Event listeners
# Click the submit button or press Enter to submit
gr.on(
triggers=[claim.submit, evidence.submit, submit.click],
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
)
# Get evidence from PDF and run the model
gr.on(
triggers=[get_evidence.click],
fn=retrieve_from_pdf,
inputs=[pdf_file, claim, top_k],
outputs=evidence,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "Support" examples
gr.on(
triggers=[support_example.dataset.select],
fn=select_example,
inputs=support_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "NEI" examples
gr.on(
triggers=[nei_example.dataset.select],
fn=select_example,
inputs=nei_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "Refute" examples
gr.on(
triggers=[refute_example.dataset.select],
fn=select_example,
inputs=refute_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle evidence retrieval examples: get evidence from PDF and run the model
gr.on(
triggers=[retrieval_example.dataset.select],
fn=select_retrieval_example,
inputs=retrieval_example.dataset,
outputs=[pdf_file, claim],
api_name=False,
).then(
fn=retrieve_from_pdf,
inputs=[pdf_file, claim, top_k],
outputs=evidence,
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Change visualization
radio.change(
fn=change_visualization,
inputs=radio,
outputs=[barplot, label],
api_name=False,
)
# Clear the previous predictions when the model is changed
gr.on(
triggers=[dropdown.select],
fn=lambda: "Model changed! Waiting for updated predictions...",
outputs=[prediction],
api_name=False,
)
# Change the model the update the predictions
dropdown.change(
fn=select_model,
inputs=dropdown,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
if __name__ == "__main__":
# allowed_paths is needed to upload PDFs from specific example directory
demo.launch(allowed_paths=[f"{os.getcwd()}/examples/retrieval"])
|