File size: 6,306 Bytes
64094d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch.nn as nn
import torch.nn.functional as F
from torchaudio.models import wav2vec2_model

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

#basic conv block
def conv_block(n_input, n_output, stride=1, kernel_size=80):
    layers = []
    if stride ==1:
        layers.append(nn.Conv1d(n_input, n_output, kernel_size=kernel_size, stride=stride, padding='same')) #Conv
    else:
        layers.append(nn.Conv1d(n_input, n_output, kernel_size=kernel_size, stride=stride)) #Conv
    layers.append(nn.BatchNorm1d(n_output))
    layers.append(nn.ReLU())
    return nn.Sequential(*layers)

#basic 2-conv residual block
class ResidualBlock(nn.Module):
    def __init__(self, n_channels, kernel_size):
        super().__init__()
       
        self.conv_block1 = conv_block(n_channels, n_channels, stride = 1, kernel_size=kernel_size)
        self.conv_block2 = conv_block(n_channels, n_channels, stride= 1, kernel_size=3)
    
    def forward(self, x):
        
        identity = x
        x = self.conv_block1(x)
        x = self.conv_block2(x)
        x = x + identity
        return x

    
class ResNetRagaClassifier(nn.Module):
    def __init__(self, params):
        super().__init__()
        n_input = params.n_input
        n_channel = params.n_channel
        stride = params.stride
        self.n_blocks = params.n_blocks
        self.conv_first = conv_block(n_input, n_channel, stride=stride, kernel_size = 80)
        self.max_pool_every = params.max_pool_every

        self.res_blocks = nn.ModuleList() #Residual Blocks
        for i in range(self.n_blocks):
            self.res_blocks.append(ResidualBlock(n_channel, kernel_size=3))
        
        #linear classification head
        self.fc1 = nn.Linear(n_channel, params.num_classes)
        
                                    
    def forward(self, x):
        #initial conv
        x = self.conv_first(x)

        #residual blocks
        for i, block in enumerate(self.res_blocks):
            x = block(x)
            if i % self.max_pool_every == 0:
                x = F.max_pool1d(x, 2)
        
        #classification head
        x = F.avg_pool1d(x, x.shape[-1])
        x = x.permute(0, 2, 1)
        x = self.fc1(x)
        x = F.log_softmax(x, dim=-1)
        
        return x


class BaseRagaClassifier(nn.Module):
    def __init__(self, params):
        super().__init__()
        n_input = params.n_input
        n_channel = params.n_channel
        stride = params.stride
        self.conv_blocks = []
        
        self.conv_block1 = conv_block(n_input, n_channel, stride=stride, kernel_size=80)
        self.conv_block2 = conv_block(n_channel, n_channel, stride=1, kernel_size=3)
        self.conv_block3 = conv_block(n_channel, 2*n_channel, stride=1, kernel_size=3)
        self.conv_block4 = conv_block(2*n_channel, 2*n_channel, stride=1, kernel_size=3)
        self.fc1 = nn.Linear(2 * n_channel, params.num_classes)

    def forward(self, x):
        x = self.conv_block1(x)
        x = F.max_pool1d(x, 4)
        x = self.conv_block2(x)
        x = F.max_pool1d(x, 4)
        x = self.conv_block3(x)
        x = F.max_pool1d(x, 4)
        x = self.conv_block4(x)
        x = F.avg_pool1d(x, x.shape[-1])
        x = x.permute(0, 2, 1)
        x = self.fc1(x)
        x = F.log_softmax(x, dim=-1)
        return x


class Wav2VecTransformer(nn.Module):
    def __init__(self, params):
        super().__init__()
        self.params = params
        self.extractor_mode = params.extractor_mode
        self.extractor_conv_layer_config = params.extractor_conv_layer_config
        self.extractor_conv_bias = params.extractor_conv_bias
        self.encoder_embed_dim = params.encoder_embed_dim
        self.encoder_projection_dropout = params.encoder_projection_dropout
        self.encoder_pos_conv_kernel = params.encoder_pos_conv_kernel
        self.encoder_pos_conv_groups = params.encoder_pos_conv_groups
        self.encoder_num_layers  = params.encoder_num_layers
        self.encoder_num_heads = params.encoder_num_heads
        self.encoder_attention_dropout = params.encoder_attention_dropout
        self.encoder_ff_interm_features =  params.encoder_ff_interm_features
        self.encoder_ff_interm_dropout = params.encoder_ff_interm_dropout
        self.encoder_dropout = params.encoder_dropout
        self.encoder_layer_norm_first = params.encoder_layer_norm_first
        self.encoder_layer_drop = params.encoder_layer_drop
        self.aux_num_out = params.num_classes

        self.extractor_conv_layer_config = [
                                            (32, 80, 16),
                                            (64, 5, 4),
                                            (128, 5, 4),
                                            (256, 5, 4),
                                            (512, 3, 2),
                                            (512, 2, 2),
                                            (512, 2, 2),
                                            ]
        self.encoder = wav2vec2_model(self.extractor_mode, \
                        self.extractor_conv_layer_config, \
                        self.extractor_conv_bias, \
                        self.encoder_embed_dim, \
                        self.encoder_projection_dropout,\
                        self.encoder_pos_conv_kernel,\
                        self.encoder_pos_conv_groups,\
                        self.encoder_num_layers,
                        self.encoder_num_heads,
                        self.encoder_attention_dropout,
                        self.encoder_ff_interm_features,
                        self.encoder_ff_interm_dropout,
                        self.encoder_dropout,\
                        self.encoder_layer_norm_first,\
                        self.encoder_layer_drop,
                        aux_num_out = None)
        
        self.audio_length = params.sample_rate*params.clip_length
        self.classification_head = nn.Linear(int(self.audio_length/(16*4*4*4*2*2*2))*params.encoder_embed_dim, params.num_classes)

    def forward(self, x):
        x = self.encoder(x)[0]
        x = x.reshape(x.shape[0], -1) # flatten
        x = self.classification_head(x)
        x = F.log_softmax(x, dim=-1)
        return x