Spaces:
Runtime error
Runtime error
| # app.py | |
| import gradio as gr | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, BitsAndBytesConfig, pipeline | |
| ) | |
| from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training | |
| # Load dataset | |
| dataset = load_dataset( | |
| "json", | |
| data_files="https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset/resolve/main/bitext_customer_support.jsonl", | |
| split="train[:100]" # Keep it small to avoid timeouts | |
| ) | |
| def format(example): | |
| return { | |
| "text": f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['output']}" | |
| } | |
| dataset = dataset.map(format) | |
| # Tokenizer | |
| model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| def tokenize(example): | |
| tokens = tokenizer(example["text"], truncation=True, padding="max_length", max_length=512) | |
| tokens["labels"] = tokens["input_ids"].copy() | |
| return tokens | |
| tokenized_dataset = dataset.map(tokenize, batched=True) | |
| # QLoRA setup | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.float16 | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| quantization_config=bnb_config | |
| ) | |
| model.gradient_checkpointing_enable() | |
| model = prepare_model_for_kbit_training(model) | |
| lora_config = LoraConfig( | |
| r=8, | |
| lora_alpha=32, | |
| lora_dropout=0.05, | |
| bias="none", | |
| target_modules=["q_proj", "v_proj"], | |
| task_type="CAUSAL_LM" | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| # Training | |
| training_args = TrainingArguments( | |
| output_dir="trained_model", | |
| per_device_train_batch_size=2, | |
| gradient_accumulation_steps=4, | |
| learning_rate=2e-4, | |
| num_train_epochs=1, | |
| logging_dir="./logs", | |
| save_strategy="no", | |
| bf16=True, | |
| report_to="none", | |
| optim="paged_adamw_8bit" | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_dataset, | |
| tokenizer=tokenizer | |
| ) | |
| trainer.train() | |
| # Inference pipeline | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| def chatbot(instruction): | |
| prompt = f"### Instruction:\n{instruction}\n\n### Response:\n" | |
| response = pipe(prompt, max_new_tokens=100)[0]['generated_text'] | |
| return response[len(prompt):].strip() | |
| gr.Interface( | |
| fn=chatbot, | |
| inputs="text", | |
| outputs="text", | |
| title="Fine-Tuned TinyLlama Bitext Chatbot" | |
| ).launch() | |