File size: 7,851 Bytes
64371be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ๊ตฌํ˜„ ๋ชจ๋“ˆ
"""

import os
import numpy as np
from typing import List, Dict, Any, Optional, Union, Tuple
import logging
from sentence_transformers import SentenceTransformer
from .base_retriever import BaseRetriever

logger = logging.getLogger(__name__)

class VectorRetriever(BaseRetriever):
    """
    ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฐ˜ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ๊ตฌํ˜„
    """
    
    def __init__(
        self, 
        embedding_model: Optional[Union[str, SentenceTransformer]] = "paraphrase-multilingual-MiniLM-L12-v2",
        documents: Optional[List[Dict[str, Any]]] = None,
        embedding_field: str = "text",
        embedding_device: str = "cpu"
    ):
        """
        VectorRetriever ์ดˆ๊ธฐํ™”
        
        Args:
            embedding_model: ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์ด๋ฆ„ ๋˜๋Š” SentenceTransformer ์ธ์Šคํ„ด์Šค
            documents: ์ดˆ๊ธฐ ๋ฌธ์„œ ๋ชฉ๋ก (์„ ํƒ ์‚ฌํ•ญ)
            embedding_field: ์ž„๋ฒ ๋”ฉํ•  ๋ฌธ์„œ ํ•„๋“œ ์ด๋ฆ„
            embedding_device: ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์‹คํ–‰ ์žฅ์น˜ ('cpu' ๋˜๋Š” 'cuda')
        """
        self.embedding_field = embedding_field
        self.model_name = None
        
        # ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ
        if isinstance(embedding_model, str):
            logger.info(f"์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ '{embedding_model}' ๋กœ๋“œ ์ค‘...")
            self.model_name = embedding_model
            self.embedding_model = SentenceTransformer(embedding_model, device=embedding_device)
        else:
            self.embedding_model = embedding_model
            # ๋ชจ๋ธ์ด ์ด๋ฏธ ๋กœ๋“œ๋œ ์ธ์Šคํ„ด์Šค์ผ ๊ฒฝ์šฐ ์ด๋ฆ„ ์ถ”์ถœ
            if hasattr(embedding_model, '_modules') and 'modules' in embedding_model._modules:
                self.model_name = "loaded_sentence_transformer"
        
        # ๋ฌธ์„œ ์ €์žฅ์†Œ ์ดˆ๊ธฐํ™”
        self.documents = []
        self.document_embeddings = None
        
        # ์ดˆ๊ธฐ ๋ฌธ์„œ๊ฐ€ ์ œ๊ณต๋œ ๊ฒฝ์šฐ ์ถ”๊ฐ€
        if documents:
            self.add_documents(documents)
    
    def add_documents(self, documents: List[Dict[str, Any]]) -> None:
        """
        ๊ฒ€์ƒ‰๊ธฐ์— ๋ฌธ์„œ๋ฅผ ์ถ”๊ฐ€ํ•˜๊ณ  ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        
        Args:
            documents: ์ถ”๊ฐ€ํ•  ๋ฌธ์„œ ๋ชฉ๋ก
        """
        if not documents:
            logger.warning("์ถ”๊ฐ€ํ•  ๋ฌธ์„œ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
            return
        
        # ๋ฌธ์„œ ์ถ”๊ฐ€
        document_texts = []
        for doc in documents:
            if self.embedding_field not in doc:
                logger.warning(f"๋ฌธ์„œ์— ํ•„๋“œ '{self.embedding_field}'๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.")
                continue
            
            self.documents.append(doc)
            document_texts.append(doc[self.embedding_field])
        
        if not document_texts:
            logger.warning(f"์ž„๋ฒ ๋”ฉํ•  ํ…์ŠคํŠธ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋ชจ๋“  ๋ฌธ์„œ์— '{self.embedding_field}' ํ•„๋“œ๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.")
            return
        
        # ๋ฌธ์„œ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        logger.info(f"{len(document_texts)}๊ฐœ ๋ฌธ์„œ์˜ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ ์ค‘...")
        new_embeddings = self.embedding_model.encode(document_texts, show_progress_bar=True)
        
        # ๊ธฐ์กด ์ž„๋ฒ ๋”ฉ๊ณผ ๋ณ‘ํ•ฉ
        if self.document_embeddings is None:
            self.document_embeddings = new_embeddings
        else:
            self.document_embeddings = np.vstack([self.document_embeddings, new_embeddings])
        
        logger.info(f"์ด {len(self.documents)}๊ฐœ ๋ฌธ์„œ, {self.document_embeddings.shape[0]}๊ฐœ ์ž„๋ฒ ๋”ฉ ์ €์žฅ๋จ")
    
    def search(self, query: str, top_k: int = 5, **kwargs) -> List[Dict[str, Any]]:
        """
        ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ์ˆ˜ํ–‰
        
        Args:
            query: ๊ฒ€์ƒ‰ ์ฟผ๋ฆฌ
            top_k: ๋ฐ˜ํ™˜ํ•  ์ƒ์œ„ ๊ฒฐ๊ณผ ์ˆ˜
            **kwargs: ์ถ”๊ฐ€ ๊ฒ€์ƒ‰ ๋งค๊ฐœ๋ณ€์ˆ˜
        
        Returns:
            ๊ด€๋ จ์„ฑ ์ ์ˆ˜์™€ ํ•จ๊ป˜ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ๋ชฉ๋ก
        """
        if not self.documents or self.document_embeddings is None:
            logger.warning("๊ฒ€์ƒ‰ํ•  ๋ฌธ์„œ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
            return []
        
        # ์ฟผ๋ฆฌ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        query_embedding = self.embedding_model.encode(query)
        
        # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
        scores = np.dot(self.document_embeddings, query_embedding) / (
            np.linalg.norm(self.document_embeddings, axis=1) * np.linalg.norm(query_embedding)
        )
        
        # ์ƒ์œ„ ๊ฒฐ๊ณผ ์„ ํƒ
        top_indices = np.argsort(scores)[-top_k:][::-1]
        
        # ๊ฒฐ๊ณผ ํ˜•์‹ํ™”
        results = []
        for idx in top_indices:
            doc = self.documents[idx].copy()
            doc["score"] = float(scores[idx])
            results.append(doc)
        
        return results
    
    def save(self, directory: str) -> None:
        """
        ๊ฒ€์ƒ‰๊ธฐ ์ƒํƒœ๋ฅผ ๋””์Šคํฌ์— ์ €์žฅ
        
        Args:
            directory: ์ €์žฅํ•  ๋””๋ ‰ํ† ๋ฆฌ ๊ฒฝ๋กœ
        """
        import pickle
        import json
        
        os.makedirs(directory, exist_ok=True)
        
        # ๋ฌธ์„œ ์ €์žฅ
        with open(os.path.join(directory, "documents.json"), "w", encoding="utf-8") as f:
            json.dump(self.documents, f, ensure_ascii=False, indent=2)
        
        # ์ž„๋ฒ ๋”ฉ ์ €์žฅ
        if self.document_embeddings is not None:
            np.save(os.path.join(directory, "embeddings.npy"), self.document_embeddings)
        
        # ๋ชจ๋ธ ์ •๋ณด ์ €์žฅ
        model_info = {
            "model_name": self.model_name or "paraphrase-multilingual-MiniLM-L12-v2",  # ๊ธฐ๋ณธ๊ฐ’ ์„ค์ •
            "embedding_dim": self.embedding_model.get_sentence_embedding_dimension() if hasattr(self.embedding_model, 'get_sentence_embedding_dimension') else 384 
        }
        
        with open(os.path.join(directory, "model_info.json"), "w") as f:
            json.dump(model_info, f)
        
        logger.info(f"๊ฒ€์ƒ‰๊ธฐ ์ƒํƒœ๋ฅผ '{directory}'์— ์ €์žฅํ–ˆ์Šต๋‹ˆ๋‹ค.")
    
    @classmethod
    def load(cls, directory: str, embedding_model: Optional[Union[str, SentenceTransformer]] = None) -> "VectorRetriever":
        """
        ๋””์Šคํฌ์—์„œ ๊ฒ€์ƒ‰๊ธฐ ์ƒํƒœ๋ฅผ ๋กœ๋“œ
        
        Args:
            directory: ๋กœ๋“œํ•  ๋””๋ ‰ํ† ๋ฆฌ ๊ฒฝ๋กœ
            embedding_model: ์‚ฌ์šฉํ•  ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ (์ œ๊ณต๋˜์ง€ ์•Š์œผ๋ฉด ์ €์žฅ๋œ ์ •๋ณด ์‚ฌ์šฉ)
        
        Returns:
            ๋กœ๋“œ๋œ VectorRetriever ์ธ์Šคํ„ด์Šค
        """
        import json
        
        # ๋ชจ๋ธ ์ •๋ณด ๋กœ๋“œ
        with open(os.path.join(directory, "model_info.json"), "r") as f:
            model_info = json.load(f)
        
        # ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์ธ์Šคํ„ด์Šคํ™”
        if embedding_model is None:
            # ๋ชจ๋ธ ์ด๋ฆ„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ ์ธ์Šคํ„ด์Šคํ™”
            if "model_name" in model_info and isinstance(model_info["model_name"], str):
                embedding_model = model_info["model_name"]
            else:
                # ์•ˆ์ „์žฅ์น˜: ๋ชจ๋ธ ์ด๋ฆ„์ด ์—†๊ฑฐ๋‚˜ ์ •์ˆ˜์ธ ๊ฒฝ์šฐ(์ด์ „ ๋ฒ„์ „ ํ˜ธํ™˜์„ฑ) ๊ธฐ๋ณธ ๋ชจ๋ธ ์‚ฌ์šฉ
                logger.warning("์œ ํšจํ•œ ๋ชจ๋ธ ์ด๋ฆ„์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๊ธฐ๋ณธ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.")
                embedding_model = "paraphrase-multilingual-MiniLM-L12-v2"
        
        # ๊ฒ€์ƒ‰๊ธฐ ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ (๋ฌธ์„œ ์—†์ด)
        retriever = cls(embedding_model=embedding_model)
        
        # ๋ฌธ์„œ ๋กœ๋“œ
        with open(os.path.join(directory, "documents.json"), "r", encoding="utf-8") as f:
            retriever.documents = json.load(f)
        
        # ์ž„๋ฒ ๋”ฉ ๋กœ๋“œ
        embeddings_path = os.path.join(directory, "embeddings.npy")
        if os.path.exists(embeddings_path):
            retriever.document_embeddings = np.load(embeddings_path)
        
        logger.info(f"๊ฒ€์ƒ‰๊ธฐ ์ƒํƒœ๋ฅผ '{directory}'์—์„œ ๋กœ๋“œํ–ˆ์Šต๋‹ˆ๋‹ค.")
        return retriever