Spaces:
Sleeping
Sleeping
File size: 7,851 Bytes
64371be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""
๋ฒกํฐ ๊ฒ์ ๊ตฌํ ๋ชจ๋
"""
import os
import numpy as np
from typing import List, Dict, Any, Optional, Union, Tuple
import logging
from sentence_transformers import SentenceTransformer
from .base_retriever import BaseRetriever
logger = logging.getLogger(__name__)
class VectorRetriever(BaseRetriever):
"""
์๋ฒ ๋ฉ ๊ธฐ๋ฐ ๋ฒกํฐ ๊ฒ์ ๊ตฌํ
"""
def __init__(
self,
embedding_model: Optional[Union[str, SentenceTransformer]] = "paraphrase-multilingual-MiniLM-L12-v2",
documents: Optional[List[Dict[str, Any]]] = None,
embedding_field: str = "text",
embedding_device: str = "cpu"
):
"""
VectorRetriever ์ด๊ธฐํ
Args:
embedding_model: ์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๋ฆ ๋๋ SentenceTransformer ์ธ์คํด์ค
documents: ์ด๊ธฐ ๋ฌธ์ ๋ชฉ๋ก (์ ํ ์ฌํญ)
embedding_field: ์๋ฒ ๋ฉํ ๋ฌธ์ ํ๋ ์ด๋ฆ
embedding_device: ์๋ฒ ๋ฉ ๋ชจ๋ธ ์คํ ์ฅ์น ('cpu' ๋๋ 'cuda')
"""
self.embedding_field = embedding_field
self.model_name = None
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋
if isinstance(embedding_model, str):
logger.info(f"์๋ฒ ๋ฉ ๋ชจ๋ธ '{embedding_model}' ๋ก๋ ์ค...")
self.model_name = embedding_model
self.embedding_model = SentenceTransformer(embedding_model, device=embedding_device)
else:
self.embedding_model = embedding_model
# ๋ชจ๋ธ์ด ์ด๋ฏธ ๋ก๋๋ ์ธ์คํด์ค์ผ ๊ฒฝ์ฐ ์ด๋ฆ ์ถ์ถ
if hasattr(embedding_model, '_modules') and 'modules' in embedding_model._modules:
self.model_name = "loaded_sentence_transformer"
# ๋ฌธ์ ์ ์ฅ์ ์ด๊ธฐํ
self.documents = []
self.document_embeddings = None
# ์ด๊ธฐ ๋ฌธ์๊ฐ ์ ๊ณต๋ ๊ฒฝ์ฐ ์ถ๊ฐ
if documents:
self.add_documents(documents)
def add_documents(self, documents: List[Dict[str, Any]]) -> None:
"""
๊ฒ์๊ธฐ์ ๋ฌธ์๋ฅผ ์ถ๊ฐํ๊ณ ์๋ฒ ๋ฉ ์์ฑ
Args:
documents: ์ถ๊ฐํ ๋ฌธ์ ๋ชฉ๋ก
"""
if not documents:
logger.warning("์ถ๊ฐํ ๋ฌธ์๊ฐ ์์ต๋๋ค.")
return
# ๋ฌธ์ ์ถ๊ฐ
document_texts = []
for doc in documents:
if self.embedding_field not in doc:
logger.warning(f"๋ฌธ์์ ํ๋ '{self.embedding_field}'๊ฐ ์์ต๋๋ค. ๊ฑด๋๋๋๋ค.")
continue
self.documents.append(doc)
document_texts.append(doc[self.embedding_field])
if not document_texts:
logger.warning(f"์๋ฒ ๋ฉํ ํ
์คํธ๊ฐ ์์ต๋๋ค. ๋ชจ๋ ๋ฌธ์์ '{self.embedding_field}' ํ๋๊ฐ ์๋์ง ํ์ธํ์ธ์.")
return
# ๋ฌธ์ ์๋ฒ ๋ฉ ์์ฑ
logger.info(f"{len(document_texts)}๊ฐ ๋ฌธ์์ ์๋ฒ ๋ฉ ์์ฑ ์ค...")
new_embeddings = self.embedding_model.encode(document_texts, show_progress_bar=True)
# ๊ธฐ์กด ์๋ฒ ๋ฉ๊ณผ ๋ณํฉ
if self.document_embeddings is None:
self.document_embeddings = new_embeddings
else:
self.document_embeddings = np.vstack([self.document_embeddings, new_embeddings])
logger.info(f"์ด {len(self.documents)}๊ฐ ๋ฌธ์, {self.document_embeddings.shape[0]}๊ฐ ์๋ฒ ๋ฉ ์ ์ฅ๋จ")
def search(self, query: str, top_k: int = 5, **kwargs) -> List[Dict[str, Any]]:
"""
์ฟผ๋ฆฌ์ ๋ํ ๋ฒกํฐ ๊ฒ์ ์ํ
Args:
query: ๊ฒ์ ์ฟผ๋ฆฌ
top_k: ๋ฐํํ ์์ ๊ฒฐ๊ณผ ์
**kwargs: ์ถ๊ฐ ๊ฒ์ ๋งค๊ฐ๋ณ์
Returns:
๊ด๋ จ์ฑ ์ ์์ ํจ๊ป ๊ฒ์๋ ๋ฌธ์ ๋ชฉ๋ก
"""
if not self.documents or self.document_embeddings is None:
logger.warning("๊ฒ์ํ ๋ฌธ์๊ฐ ์์ต๋๋ค.")
return []
# ์ฟผ๋ฆฌ ์๋ฒ ๋ฉ ์์ฑ
query_embedding = self.embedding_model.encode(query)
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
scores = np.dot(self.document_embeddings, query_embedding) / (
np.linalg.norm(self.document_embeddings, axis=1) * np.linalg.norm(query_embedding)
)
# ์์ ๊ฒฐ๊ณผ ์ ํ
top_indices = np.argsort(scores)[-top_k:][::-1]
# ๊ฒฐ๊ณผ ํ์ํ
results = []
for idx in top_indices:
doc = self.documents[idx].copy()
doc["score"] = float(scores[idx])
results.append(doc)
return results
def save(self, directory: str) -> None:
"""
๊ฒ์๊ธฐ ์ํ๋ฅผ ๋์คํฌ์ ์ ์ฅ
Args:
directory: ์ ์ฅํ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก
"""
import pickle
import json
os.makedirs(directory, exist_ok=True)
# ๋ฌธ์ ์ ์ฅ
with open(os.path.join(directory, "documents.json"), "w", encoding="utf-8") as f:
json.dump(self.documents, f, ensure_ascii=False, indent=2)
# ์๋ฒ ๋ฉ ์ ์ฅ
if self.document_embeddings is not None:
np.save(os.path.join(directory, "embeddings.npy"), self.document_embeddings)
# ๋ชจ๋ธ ์ ๋ณด ์ ์ฅ
model_info = {
"model_name": self.model_name or "paraphrase-multilingual-MiniLM-L12-v2", # ๊ธฐ๋ณธ๊ฐ ์ค์
"embedding_dim": self.embedding_model.get_sentence_embedding_dimension() if hasattr(self.embedding_model, 'get_sentence_embedding_dimension') else 384
}
with open(os.path.join(directory, "model_info.json"), "w") as f:
json.dump(model_info, f)
logger.info(f"๊ฒ์๊ธฐ ์ํ๋ฅผ '{directory}'์ ์ ์ฅํ์ต๋๋ค.")
@classmethod
def load(cls, directory: str, embedding_model: Optional[Union[str, SentenceTransformer]] = None) -> "VectorRetriever":
"""
๋์คํฌ์์ ๊ฒ์๊ธฐ ์ํ๋ฅผ ๋ก๋
Args:
directory: ๋ก๋ํ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก
embedding_model: ์ฌ์ฉํ ์๋ฒ ๋ฉ ๋ชจ๋ธ (์ ๊ณต๋์ง ์์ผ๋ฉด ์ ์ฅ๋ ์ ๋ณด ์ฌ์ฉ)
Returns:
๋ก๋๋ VectorRetriever ์ธ์คํด์ค
"""
import json
# ๋ชจ๋ธ ์ ๋ณด ๋ก๋
with open(os.path.join(directory, "model_info.json"), "r") as f:
model_info = json.load(f)
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ์ธ์คํด์คํ
if embedding_model is None:
# ๋ชจ๋ธ ์ด๋ฆ์ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ ์ธ์คํด์คํ
if "model_name" in model_info and isinstance(model_info["model_name"], str):
embedding_model = model_info["model_name"]
else:
# ์์ ์ฅ์น: ๋ชจ๋ธ ์ด๋ฆ์ด ์๊ฑฐ๋ ์ ์์ธ ๊ฒฝ์ฐ(์ด์ ๋ฒ์ ํธํ์ฑ) ๊ธฐ๋ณธ ๋ชจ๋ธ ์ฌ์ฉ
logger.warning("์ ํจํ ๋ชจ๋ธ ์ด๋ฆ์ ์ฐพ์ ์ ์์ต๋๋ค. ๊ธฐ๋ณธ ๋ชจ๋ธ์ ์ฌ์ฉํฉ๋๋ค.")
embedding_model = "paraphrase-multilingual-MiniLM-L12-v2"
# ๊ฒ์๊ธฐ ์ธ์คํด์ค ์์ฑ (๋ฌธ์ ์์ด)
retriever = cls(embedding_model=embedding_model)
# ๋ฌธ์ ๋ก๋
with open(os.path.join(directory, "documents.json"), "r", encoding="utf-8") as f:
retriever.documents = json.load(f)
# ์๋ฒ ๋ฉ ๋ก๋
embeddings_path = os.path.join(directory, "embeddings.npy")
if os.path.exists(embeddings_path):
retriever.document_embeddings = np.load(embeddings_path)
logger.info(f"๊ฒ์๊ธฐ ์ํ๋ฅผ '{directory}'์์ ๋ก๋ํ์ต๋๋ค.")
return retriever
|