File size: 5,504 Bytes
ab7c317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e69b4
ab7c317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import random
import numpy as np
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

import unicodedata
import re
import gradio as gr
from pprint import pprint



MODEL_ID = "livekit/turn-detector"
REVISION_ID = "v0.3.0-intl"

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, revision=REVISION_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    revision=REVISION_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()


EN_THRESHOLD = 0.0049
START_TOKEN_ID = tokenizer.convert_tokens_to_ids('<|im_start|>')
EOU_TOKEN_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
NEWLINE_TOKEN_ID = tokenizer.convert_tokens_to_ids('\n')
USER_TOKEN_IDS = (
    tokenizer.convert_tokens_to_ids('user'),
    tokenizer.convert_tokens_to_ids('<|user|>')
)
SPECIAL_TOKENS = set([
    NEWLINE_TOKEN_ID,
    START_TOKEN_ID,
    tokenizer.convert_tokens_to_ids('user'),
    tokenizer.convert_tokens_to_ids('assistant'),
])
CONTROL_TOKS = ['<|im_start|>', '<|im_end|>', 'user', 'assistant', '\n']


def normalize_text(text):
    text = unicodedata.normalize("NFKC", text.lower())
    text = ''.join(
        ch for ch in text
        if not (unicodedata.category(ch).startswith('P') and ch not in ["'", "-"])
    )
    text = re.sub(r'\s+', ' ', text).strip()
    return text


def format_input(text):
    if '<|im_start|>' not in text:
        # assume single user turn
        text = {'role': 'user', 'content': normalize_text(text)}
        text = tokenizer.apply_chat_template(
            [text],
            tokenize=False,
            add_generation_prompt=True
        )
    return text


def log_odds(p, eps=0):
    return np.log(p /(1 - p + eps))


def make_pred_mask(input_ids):
    user_mask = [False] * len(input_ids)
    is_user_role = False
    for i in range(len(input_ids)-1):
        if input_ids[i] == START_TOKEN_ID:
            is_user_role = input_ids[i+1] in USER_TOKEN_IDS
        if is_user_role and (input_ids[i] not in SPECIAL_TOKENS):
            user_mask[i] = True
        else:
            user_mask[i] = False
    return user_mask


def predict_eou(text):
    text = format_input(text)
    with torch.no_grad():
        with torch.amp.autocast(model.device.type):
            inputs = tokenizer.encode(
                text,
                add_special_tokens=False,
                return_tensors="pt"
            ).to(model.device)
            outputs = model(inputs)
    probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
    probs = probs.cpu().float().numpy()[:, :, EOU_TOKEN_ID].flatten()

    input_ids = inputs.cpu().int().flatten().numpy()
    mask = np.array(make_pred_mask(input_ids))
    probs[~mask] = np.nan

    tokens = [tokenizer.decode(id) for id in input_ids]
    res = {'token':tokens,'pred':probs}
    return pd.DataFrame(res)


def make_styled_df(df, thresh=EN_THRESHOLD, cmap="coolwarm"):
    EPS = 1e-12
    df = df.copy()
    df = df[~df.token.isin(CONTROL_TOKS)]
    df.token = df.token.replace({"\n": "⏎"," ": "␠",})

    df['log_odds'] = (
        df.pred.fillna(thresh)
        .add(EPS)
        .apply(log_odds).sub(log_odds(thresh))
        .mask(df.pred.isna())
    )
    df['Prob(EoT) as %'] = df.pred.mul(100).fillna(0).astype(int)
    vmin, vmax = df.log_odds.min(), df.log_odds.max()
    vmax_abs = max(abs(vmin), abs(vmax)) * 1.5

    fmt = (
        df.drop(columns=['pred'])
        .style
        .bar(
            subset=['log_odds'],
            align="zero",
            vmin=-vmax_abs,
            vmax=vmax_abs,
            cmap=cmap,
            height=70,
            width=100,
        )
        .text_gradient(subset=['log_odds'], cmap=cmap, vmin=-vmax_abs, vmax=vmax_abs)
        .format(na_rep='', precision=1, subset=['log_odds'])
        .format("{:3d}", subset=['Prob(EoT) as %'])
        .hide(axis='index')
    )
    return fmt.to_html()


def generate_highlighted_text(text, threshold=EN_THRESHOLD):
    eps = 1e-12
    if not text:
        return []

    df = predict_eou(text)
    df.token = df.token.replace({"user": "\nUSER:", "assistant": "\nAGENT:"})
    df = df[~df.token.isin(CONTROL_TOKS)]

    df['score'] = (
        df.pred.fillna(threshold)
        .add(eps)
        .apply(log_odds).sub(log_odds(threshold))
        .mask(df.pred.isna() | df.pred.round(2) == 0)
    )
    max_abs_score = df['score'].abs().max() * 1.5

    if max_abs_score > 0:
        df.score = df.score / max_abs_score

    styled_df = make_styled_df(df[['token', 'pred']])
    return list(zip(df.token, df.score)), styled_df



convo_text = """<|im_start|>assistant
what is your phone number<|im_end|>
<|im_start|>user
555 410 0423<|im_end|>"""


demo = gr.Interface(
    fn=generate_highlighted_text,
    theme="soft",
    inputs=gr.Textbox(
        label="Input Text",
        info="If <|im_start|> is present it will treat input as formatted convo. if not it will format it as convo with 1 user message.",
        # value="can you help me order some pizza",
        value=convo_text,
        lines=2
    ),
    outputs=[
        gr.HighlightedText(
            label="EoT Predictions",
            color_map="coolwarm",
            scale=1.5,
        ),
        gr.HTML(label="Raw scores",)
    ],
    title="Turn Detector Debugger",
    description="Visualize predicted turn endings. The coloring is based on log-odds, centered on the threshold.\n Red means agent should reply; Blue means agent should wait",
    allow_flagging="never"
)

demo.launch()