File size: 2,898 Bytes
1f22b14
 
71e7dd8
1f22b14
71e7dd8
06bca0c
1f22b14
 
06bca0c
 
 
 
 
71e7dd8
1f22b14
 
 
 
 
 
 
 
 
 
71e7dd8
1f22b14
06bca0c
1f22b14
 
 
 
 
 
 
 
06bca0c
 
 
 
 
71e7dd8
1f22b14
 
 
 
 
 
 
 
 
 
71e7dd8
1f22b14
 
 
 
 
 
 
 
 
 
71e7dd8
1f22b14
06bca0c
1f22b14
 
 
 
 
 
 
6aad21a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import pandas as pd
import pytest

from buster.documents import DocumentsDB, DocumentsPickle
from buster.retriever import PickleRetriever, SQLiteRetriever


@pytest.mark.parametrize(
    "documents_manager, retriever, extension",
    [(DocumentsDB, SQLiteRetriever, "db"), (DocumentsPickle, PickleRetriever, "tar.gz")],
)
def test_write_read(tmp_path, documents_manager, retriever, extension):
    db = documents_manager(tmp_path / f"test.{extension}")

    data = pd.DataFrame.from_dict(
        {
            "title": ["test"],
            "url": ["http://url.com"],
            "content": ["cool text"],
            "embedding": [np.arange(10, dtype=np.float32) - 0.3],
            "n_tokens": [10],
        }
    )
    db.add(source="test", df=data)

    db_data = retriever(tmp_path / f"test.{extension}").get_documents("test")

    assert db_data["title"].iloc[0] == data["title"].iloc[0]
    assert db_data["url"].iloc[0] == data["url"].iloc[0]
    assert db_data["content"].iloc[0] == data["content"].iloc[0]
    assert np.allclose(db_data["embedding"].iloc[0], data["embedding"].iloc[0])
    assert db_data["n_tokens"].iloc[0] == data["n_tokens"].iloc[0]


@pytest.mark.parametrize(
    "documents_manager, retriever, extension",
    [(DocumentsDB, SQLiteRetriever, "db"), (DocumentsPickle, PickleRetriever, "tar.gz")],
)
def test_write_write_read(tmp_path, documents_manager, retriever, extension):
    db = documents_manager(tmp_path / f"test.{extension}")

    data_1 = pd.DataFrame.from_dict(
        {
            "title": ["test"],
            "url": ["http://url.com"],
            "content": ["cool text"],
            "embedding": [np.arange(10, dtype=np.float32) - 0.3],
            "n_tokens": [10],
        }
    )
    db.add(source="test", df=data_1)

    data_2 = pd.DataFrame.from_dict(
        {
            "title": ["other"],
            "url": ["http://url.com/page.html"],
            "content": ["lorem ipsum"],
            "embedding": [np.arange(20, dtype=np.float32) / 10 - 2.3],
            "n_tokens": [20],
        }
    )
    db.add(source="test", df=data_2)

    db_data = retriever(tmp_path / f"test.{extension}").get_documents("test")

    assert len(db_data) == len(data_2)
    assert db_data["title"].iloc[0] == data_2["title"].iloc[0]
    assert db_data["url"].iloc[0] == data_2["url"].iloc[0]
    assert db_data["content"].iloc[0] == data_2["content"].iloc[0]
    assert np.allclose(db_data["embedding"].iloc[0], data_2["embedding"].iloc[0])
    assert db_data["n_tokens"].iloc[0] == data_2["n_tokens"].iloc[0]


def test_update_source(tmp_path):
    display_name = "Super Test"
    db = DocumentsDB(tmp_path / "test.db")

    db.update_source(source="test", display_name=display_name)

    returned_display_name = SQLiteRetriever(tmp_path / "test.db").get_source_display_name("test")

    assert display_name == returned_display_name