Spaces:
Runtime error
Runtime error
import logging | |
from dataclasses import dataclass, field | |
from functools import lru_cache | |
import numpy as np | |
import pandas as pd | |
from openai.embeddings_utils import cosine_similarity, get_embedding | |
from buster.completers import get_completer | |
from buster.formatter import ( | |
Response, | |
ResponseFormatter, | |
Source, | |
response_formatter_factory, | |
) | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
class BusterConfig: | |
"""Configuration object for a chatbot. | |
documents_csv: Path to the csv file containing the documents and their embeddings. | |
embedding_model: OpenAI model to use to get embeddings. | |
top_k: Max number of documents to retrieve, ordered by cosine similarity | |
thresh: threshold for cosine similarity to be considered | |
max_words: maximum number of words the retrieved documents can be. Will truncate otherwise. | |
completion_kwargs: kwargs for the OpenAI.Completion() method | |
separator: the separator to use, can be either "\n" or <p> depending on rendering. | |
response_format: the type of format to render links with, e.g. slack or markdown | |
unknown_prompt: Prompt to use to generate the "I don't know" embedding to compare to. | |
text_before_prompt: Text to prompt GPT with before the user prompt, but after the documentation. | |
reponse_footnote: Generic response to add the the chatbot's reply. | |
source: the source of the document to consider | |
""" | |
documents_file: str = "buster/data/document_embeddings.tar.gz" | |
embedding_model: str = "text-embedding-ada-002" | |
top_k: int = 3 | |
thresh: float = 0.7 | |
max_words: int = 3000 | |
unknown_threshold: float = 0.9 # set to 0 to deactivate | |
completer_cfg: dict = field( | |
# TODO: Put all this in its own config with sane defaults? | |
default_factory=lambda: { | |
"name": "GPT3", | |
"text_before_documents": "You are a chatbot answering questions.\n", | |
"text_before_prompt": "Answer the following question:\n", | |
"completion_kwargs": { | |
"engine": "text-davinci-003", | |
"max_tokens": 200, | |
"temperature": None, | |
"top_p": None, | |
"frequency_penalty": 1, | |
"presence_penalty": 1, | |
}, | |
} | |
) | |
response_format: str = "slack" | |
unknown_prompt: str = "I Don't know how to answer your question." | |
response_footnote: str = "I'm a bot 🤖 and not always perfect." | |
source: str = "" | |
from buster.retriever import Retriever | |
class Buster: | |
def __init__(self, cfg: BusterConfig, retriever: Retriever): | |
self._unk_embedding = None | |
self.cfg = cfg | |
self.update_cfg(cfg) | |
self.retriever = retriever | |
def unk_embedding(self): | |
return self._unk_embedding | |
def unk_embedding(self, embedding): | |
logger.info("Setting new UNK embedding...") | |
self._unk_embedding = embedding | |
return self._unk_embedding | |
def update_cfg(self, cfg: BusterConfig): | |
"""Every time we set a new config, we update the things that need to be updated.""" | |
logger.info(f"Updating config to {cfg.source}:\n{cfg}") | |
self.cfg = cfg | |
self.completer = get_completer(cfg.completer_cfg) | |
self.unk_embedding = self.get_embedding(self.cfg.unknown_prompt, engine=self.cfg.embedding_model) | |
self.response_formatter = response_formatter_factory( | |
format=self.cfg.response_format, response_footnote=self.cfg.response_footnote | |
) | |
logger.info(f"Config Updated.") | |
def get_embedding(self, query: str, engine: str): | |
logger.info("generating embedding") | |
return get_embedding(query, engine=engine) | |
def rank_documents( | |
self, | |
query: str, | |
top_k: float, | |
thresh: float, | |
engine: str, | |
source: str, | |
) -> pd.DataFrame: | |
""" | |
Compare the question to the series of documents and return the best matching documents. | |
""" | |
query_embedding = self.get_embedding( | |
query, | |
engine=engine, | |
) | |
matched_documents = self.retriever.retrieve(query_embedding, top_k=top_k, source=source) | |
# log matched_documents to the console | |
logger.info(f"matched documents before thresh: {matched_documents}") | |
# filter out matched_documents using a threshold | |
if thresh: | |
matched_documents = matched_documents[matched_documents.similarity > thresh] | |
logger.info(f"matched documents after thresh: {matched_documents}") | |
return matched_documents | |
def prepare_documents(self, matched_documents: pd.DataFrame, max_words: int) -> str: | |
# gather the documents in one large plaintext variable | |
documents_list = matched_documents.content.to_list() | |
documents_str = "" | |
for idx, doc in enumerate(documents_list): | |
documents_str += f"<DOCUMENT> {doc} <\DOCUMENT>" | |
# truncate the documents to fit | |
# TODO: increase to actual token count | |
word_count = len(documents_str.split(" ")) | |
if word_count > max_words: | |
logger.info("truncating documents to fit...") | |
documents_str = " ".join(documents_str.split(" ")[0:max_words]) | |
logger.info(f"Documents after truncation: {documents_str}") | |
return documents_str | |
def add_sources( | |
self, | |
matched_documents: pd.DataFrame, | |
): | |
sources = ( | |
Source( | |
source=dct["source"], title=dct["title"], url=dct["url"], question_similarity=dct["similarity"] * 100 | |
) | |
for dct in matched_documents.to_dict(orient="records") | |
) | |
return sources | |
def check_response_relevance( | |
self, completion: str, engine: str, unk_embedding: np.array, unk_threshold: float | |
) -> bool: | |
"""Check to see if a response is relevant to the chatbot's knowledge or not. | |
We assume we've prompt-engineered our bot to say a response is unrelated to the context if it isn't relevant. | |
Here, we compare the embedding of the response to the embedding of the prompt-engineered "I don't know" embedding. | |
set the unk_threshold to 0 to essentially turn off this feature. | |
""" | |
response_embedding = self.get_embedding( | |
completion, | |
engine=engine, | |
) | |
score = cosine_similarity(response_embedding, unk_embedding) | |
logger.info(f"UNK score: {score}") | |
# Likely that the answer is meaningful, add the top sources | |
return score < unk_threshold | |
def process_input(self, user_input: str, formatter: ResponseFormatter = None) -> str: | |
""" | |
Main function to process the input question and generate a formatted output. | |
""" | |
logger.info(f"User Input:\n{user_input}") | |
# We make sure there is always a newline at the end of the question to avoid completing the question. | |
if not user_input.endswith("\n"): | |
user_input += "\n" | |
matched_documents = self.rank_documents( | |
query=user_input, | |
top_k=self.cfg.top_k, | |
thresh=self.cfg.thresh, | |
engine=self.cfg.embedding_model, | |
source=self.cfg.source, | |
) | |
if len(matched_documents) == 0: | |
response = Response(self.cfg.unknown_prompt) | |
sources = tuple() | |
return self.response_formatter(response, sources) | |
# generate a completion | |
documents: str = self.prepare_documents(matched_documents, max_words=self.cfg.max_words) | |
response: Response = self.completer.generate_response(user_input, documents) | |
logger.info(f"GPT Response:\n{response.text}") | |
sources = self.add_sources(matched_documents) | |
# check for relevance | |
relevant = self.check_response_relevance( | |
completion=response.text, | |
engine=self.cfg.embedding_model, | |
unk_embedding=self.unk_embedding, | |
unk_threshold=self.cfg.unknown_threshold, | |
) | |
if not relevant: | |
# answer generated was the chatbot saying it doesn't know how to answer | |
# override completion with generic "I don't know" | |
response = Response(text=self.cfg.unknown_prompt) | |
sources = tuple() | |
return self.response_formatter(response, sources) | |