buster-dev / tests /test_db.py
hbertrand's picture
Create SQLite db for documents (#46)
1f22b14 unverified
raw
history blame
1.95 kB
import numpy as np
import pandas as pd
from buster.db import DocumentsDB
def test_write_read():
db = DocumentsDB(":memory:")
data = pd.DataFrame.from_dict(
{
"title": ["test"],
"url": ["http://url.com"],
"content": ["cool text"],
"embedding": [np.arange(10, dtype=np.float32) - 0.3],
"n_tokens": [10],
}
)
db.write_documents(source="test", df=data)
db_data = db.get_documents("test")
assert db_data["title"].iloc[0] == data["title"].iloc[0]
assert db_data["url"].iloc[0] == data["url"].iloc[0]
assert db_data["content"].iloc[0] == data["content"].iloc[0]
assert np.allclose(db_data["embedding"].iloc[0], data["embedding"].iloc[0])
assert db_data["n_tokens"].iloc[0] == data["n_tokens"].iloc[0]
def test_write_write_read():
db = DocumentsDB(":memory:")
data_1 = pd.DataFrame.from_dict(
{
"title": ["test"],
"url": ["http://url.com"],
"content": ["cool text"],
"embedding": [np.arange(10, dtype=np.float32) - 0.3],
"n_tokens": [10],
}
)
db.write_documents(source="test", df=data_1)
data_2 = pd.DataFrame.from_dict(
{
"title": ["other"],
"url": ["http://url.com/page.html"],
"content": ["lorem ipsum"],
"embedding": [np.arange(20, dtype=np.float32) / 10 - 2.3],
"n_tokens": [20],
}
)
db.write_documents(source="test", df=data_2)
db_data = db.get_documents("test")
assert len(db_data) == len(data_2)
assert db_data["title"].iloc[0] == data_2["title"].iloc[0]
assert db_data["url"].iloc[0] == data_2["url"].iloc[0]
assert db_data["content"].iloc[0] == data_2["content"].iloc[0]
assert np.allclose(db_data["embedding"].iloc[0], data_2["embedding"].iloc[0])
assert db_data["n_tokens"].iloc[0] == data_2["n_tokens"].iloc[0]