buster-dev / buster /docparser.py
hbertrand's picture
Pytorch (#17)
8ef8e62 unverified
raw
history blame
5.71 kB
import glob
import math
import os
import bs4
import pandas as pd
import tiktoken
from bs4 import BeautifulSoup
from openai.embeddings_utils import get_embedding
EMBEDDING_MODEL = "text-embedding-ada-002"
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
BASE_URL_MILA = "https://docs.mila.quebec/"
BASE_URL_ORION = "https://orion.readthedocs.io/en/stable/"
BASE_URL_PYTORCH = "https://pytorch.org/docs/stable/"
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
def parse_section(nodes: list[bs4.element.NavigableString]) -> str:
section = []
for node in nodes:
if node.name == "table":
node_text = pd.read_html(node.prettify())[0].to_markdown(index=False, tablefmt="github")
else:
node_text = node.text
section.append(node_text)
section = "".join(section)[1:]
return section
def get_all_documents(
root_dir: str, base_url: str, min_section_length: int = 100, max_section_length: int = 2000
) -> pd.DataFrame:
"""Parse all HTML files in `root_dir`, and extract all sections.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to `section` HTML tags that have a headerlink attached.
"""
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
def get_all_subsections(soup: BeautifulSoup) -> tuple[list[str], list[str], list[str]]:
found = soup.find_all("a", href=True, class_="headerlink")
sections = []
urls = []
names = []
for section_found in found:
section_soup = section_found.parent.parent
section_href = section_soup.find_all("a", href=True, class_="headerlink")
# If sections has subsections, keep only the part before the first subsection
if len(section_href) > 1 and section_soup.section is not None:
section_siblings = list(section_soup.section.previous_siblings)[::-1]
section = parse_section(section_siblings)
else:
section = parse_section(section_soup.children)
# Remove special characters, plus newlines in some url and section names.
section = section.strip()
url = section_found["href"].strip().replace("\n", "")
name = section_found.parent.text.strip()[:-1].replace("\n", "")
# If text is too long, split into chunks of equal sizes
if len(section) > max_section_length:
n_chunks = math.ceil(len(section) / float(max_section_length))
separator_index = math.floor(len(section) / n_chunks)
section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
url_chunks = [url] * n_chunks
name_chunks = [name] * n_chunks
sections.extend(section_chunks)
urls.extend(url_chunks)
names.extend(name_chunks)
# If text is not too short, add in 1 chunk
elif len(section) > min_section_length:
sections.append(section)
urls.append(url)
names.append(name)
return sections, urls, names
sections = []
urls = []
names = []
for file in files:
filepath = os.path.join(root_dir, file)
with open(filepath, "r") as f:
source = f.read()
soup = BeautifulSoup(source, "html.parser")
sections_file, urls_file, names_file = get_all_subsections(soup)
sections.extend(sections_file)
urls_file = [base_url + file + url for url in urls_file]
urls.extend(urls_file)
names.extend(names_file)
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
return documents_df
def get_file_extension(filepath: str) -> str:
return os.path.splitext(filepath)[1]
def write_documents(filepath: str, documents_df: pd.DataFrame):
ext = get_file_extension(filepath)
if ext == ".csv":
documents_df.to_csv(filepath, index=False)
elif ext in PICKLE_EXTENSIONS:
documents_df.to_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def read_documents(filepath: str) -> pd.DataFrame:
ext = get_file_extension(filepath)
if ext == ".csv":
return pd.read_csv(filepath)
elif ext in PICKLE_EXTENSIONS:
return pd.read_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x)))
return df
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
df["embedding"] = df.text.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL))
return df
def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame:
# Get all documents and precompute their embeddings
df = read_documents(filepath)
df = compute_n_tokens(df)
df = precompute_embeddings(df)
write_documents(output_file, df)
return df
if __name__ == "__main__":
root_dir = "/home/hadrien/perso/mila-docs/output/"
save_filepath = "data/documents.tar.gz"
# How to write
documents_df = get_all_documents(root_dir)
write_documents(save_filepath, documents_df)
# How to load
documents_df = read_documents(save_filepath)
# precompute the document embeddings
df = generate_embeddings(filepath=save_filepath, output_file="data/document_embeddings.tar.gz")