jerpint commited on
Commit
6a09028
·
unverified ·
1 Parent(s): 45505b5

Refactoring (#48)

Browse files

Refactor the `Chatbot` class to make overall handling easier.

* Fix error logging
* Limit to words instead of chars
* Add support for text before the documents (useful for prompt engineering)
* return GPT responses separately
* put a check for relevance in a separate function
* use relevance to check if documents were found or not

Files changed (1) hide show
  1. buster/chatbot.py +103 -64
buster/chatbot.py CHANGED
@@ -8,7 +8,7 @@ import pandas as pd
8
  import promptlayer
9
  from openai.embeddings_utils import cosine_similarity, get_embedding
10
 
11
- from buster.docparser import EMBEDDING_MODEL, read_documents
12
 
13
  logger = logging.getLogger(__name__)
14
  logging.basicConfig(level=logging.INFO)
@@ -32,7 +32,7 @@ class ChatbotConfig:
32
  embedding_model: OpenAI model to use to get embeddings.
33
  top_k: Max number of documents to retrieve, ordered by cosine similarity
34
  thresh: threshold for cosine similarity to be considered
35
- max_chars: maximum number of characters the retrieved documents can be. Will truncate otherwise.
36
  completion_kwargs: kwargs for the OpenAI.Completion() method
37
  separator: the separator to use, can be either "\n" or <p> depending on rendering.
38
  link_format: the type of format to render links with, e.g. slack or markdown
@@ -45,7 +45,8 @@ class ChatbotConfig:
45
  embedding_model: str = "text-embedding-ada-002"
46
  top_k: int = 3
47
  thresh: float = 0.7
48
- max_chars: int = 3000
 
49
 
50
  completion_kwargs: dict = field(
51
  default_factory=lambda: {
@@ -60,6 +61,7 @@ class ChatbotConfig:
60
  separator: str = "\n"
61
  link_format: str = "slack"
62
  unknown_prompt: str = "I Don't know how to answer your question."
 
63
  text_before_prompt: str = "I'm a chatbot, bleep bloop."
64
  text_after_response: str = "Answer the following question:\n"
65
 
@@ -78,25 +80,23 @@ class Chatbot:
78
  logger.info(f"embeddings loaded.")
79
 
80
  def _init_unk_embedding(self):
81
- logger.info("Generating UNK token...")
82
- unknown_prompt = self.cfg.unknown_prompt
83
- engine = self.cfg.embedding_model
84
  self.unk_embedding = get_embedding(
85
- unknown_prompt,
86
- engine=engine,
87
  )
88
 
89
  def rank_documents(
90
  self,
91
  documents: pd.DataFrame,
92
  query: str,
 
 
 
93
  ) -> pd.DataFrame:
94
  """
95
  Compare the question to the series of documents and return the best matching documents.
96
  """
97
- top_k = self.cfg.top_k
98
- thresh = self.cfg.thresh
99
- engine = self.cfg.embedding_model # EMBEDDING_MODEL
100
 
101
  query_embedding = get_embedding(
102
  query,
@@ -121,59 +121,64 @@ class Chatbot:
121
 
122
  return matched_documents
123
 
124
- def prepare_prompt(self, question: str, candidates: pd.DataFrame) -> str:
125
- """
126
- Prepare the prompt with prompt engineering.
127
- """
128
-
129
- max_chars = self.cfg.max_chars
130
- text_before_prompt = self.cfg.text_before_prompt
131
-
132
- documents_list = candidates.text.to_list()
133
  documents_str = " ".join(documents_list)
134
- if len(documents_str) > max_chars:
 
 
 
 
135
  logger.info("truncating documents to fit...")
136
- documents_str = documents_str[0:max_chars]
 
137
 
138
- return documents_str + text_before_prompt + question
139
 
140
- def generate_response(self, prompt: str, matched_documents: pd.DataFrame) -> str:
 
 
 
 
 
 
141
  """
142
- Generate a response based on the retrieved documents.
143
  """
144
- if len(matched_documents) == 0:
145
- # No matching documents were retrieved, return
146
- response_text = "I did not find any relevant documentation related to your question."
147
- return response_text
148
 
149
- logger.info(f"querying GPT...")
150
- logger.info(f"Prompt: {prompt}")
151
  # Call the API to generate a response
 
152
  try:
153
- completion_kwargs = self.cfg.completion_kwargs
154
- completion_kwargs["prompt"] = prompt
155
- response = openai.Completion.create(**completion_kwargs)
156
-
157
- # Get the response text
158
- response_text = response["choices"][0]["text"]
159
- logger.info(f"GPT Response:\n{response_text}")
160
- return response_text
161
 
162
  except Exception as e:
163
  # log the error and return a generic response instead.
164
- import traceback
 
 
165
 
166
- logger.error("Error connecting to OpenAI API")
167
- logging.error(traceback.format_exc())
168
- response_text = "Hmm, we're having trouble connecting to OpenAI right now... Try again soon!"
169
- return response_text
 
 
 
 
 
 
 
 
 
170
 
171
- def add_sources(self, response: str, matched_documents: pd.DataFrame):
172
  """
173
  Add sources fromt the matched documents to the response.
174
  """
175
- sep = self.cfg.separator # \n
176
- format = self.cfg.link_format
177
 
178
  urls = matched_documents.url.to_list()
179
  names = matched_documents.name.to_list()
@@ -192,25 +197,46 @@ class Chatbot:
192
 
193
  return response
194
 
195
- def format_response(self, response: str, matched_documents: pd.DataFrame) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  """
197
  Format the response by adding the sources if necessary, and a disclaimer prompt.
198
  """
199
-
200
  sep = self.cfg.separator
201
- text_after_response = self.cfg.text_after_response
202
 
203
- if len(matched_documents) > 0:
204
- # we have matched documents, now we check to see if the answer is meaningful
205
- response_embedding = get_embedding(
206
- response,
207
- engine=EMBEDDING_MODEL,
 
 
 
 
 
 
 
 
208
  )
209
- score = cosine_similarity(response_embedding, self.unk_embedding)
210
- logger.info(f"UNK score: {score}")
211
- if score < 0.9:
212
- # Liekly that the answer is meaningful, add the top sources
213
- response = self.add_sources(response, matched_documents=matched_documents)
214
 
215
  response += f"{sep}{sep}{sep}{text_after_response}{sep}"
216
 
@@ -223,9 +249,22 @@ class Chatbot:
223
 
224
  logger.info(f"User Question:\n{question}")
225
 
226
- matched_documents = self.rank_documents(documents=self.documents, query=question)
227
- prompt = self.prepare_prompt(question, matched_documents)
228
- response = self.generate_response(prompt, matched_documents)
229
- formatted_output = self.format_response(response, matched_documents)
 
 
 
 
 
 
 
 
 
 
 
 
 
230
 
231
  return formatted_output
 
8
  import promptlayer
9
  from openai.embeddings_utils import cosine_similarity, get_embedding
10
 
11
+ from buster.docparser import read_documents
12
 
13
  logger = logging.getLogger(__name__)
14
  logging.basicConfig(level=logging.INFO)
 
32
  embedding_model: OpenAI model to use to get embeddings.
33
  top_k: Max number of documents to retrieve, ordered by cosine similarity
34
  thresh: threshold for cosine similarity to be considered
35
+ max_words: maximum number of words the retrieved documents can be. Will truncate otherwise.
36
  completion_kwargs: kwargs for the OpenAI.Completion() method
37
  separator: the separator to use, can be either "\n" or <p> depending on rendering.
38
  link_format: the type of format to render links with, e.g. slack or markdown
 
45
  embedding_model: str = "text-embedding-ada-002"
46
  top_k: int = 3
47
  thresh: float = 0.7
48
+ max_words: int = 3000
49
+ unknown_threshold: float = 0.9 # set to 0 to deactivate
50
 
51
  completion_kwargs: dict = field(
52
  default_factory=lambda: {
 
61
  separator: str = "\n"
62
  link_format: str = "slack"
63
  unknown_prompt: str = "I Don't know how to answer your question."
64
+ text_before_documents: str = ("You are a chatbot.",)
65
  text_before_prompt: str = "I'm a chatbot, bleep bloop."
66
  text_after_response: str = "Answer the following question:\n"
67
 
 
80
  logger.info(f"embeddings loaded.")
81
 
82
  def _init_unk_embedding(self):
83
+ logger.info("Generating UNK embedding...")
 
 
84
  self.unk_embedding = get_embedding(
85
+ self.cfg.unknown_prompt,
86
+ engine=self.cfg.embedding_model,
87
  )
88
 
89
  def rank_documents(
90
  self,
91
  documents: pd.DataFrame,
92
  query: str,
93
+ top_k: float,
94
+ thresh: float,
95
+ engine: str,
96
  ) -> pd.DataFrame:
97
  """
98
  Compare the question to the series of documents and return the best matching documents.
99
  """
 
 
 
100
 
101
  query_embedding = get_embedding(
102
  query,
 
121
 
122
  return matched_documents
123
 
124
+ def prepare_documents(self, matched_documents: pd.DataFrame, max_words: int) -> str:
125
+ # gather the documents in one large plaintext variable
126
+ documents_list = matched_documents.text.to_list()
 
 
 
 
 
 
127
  documents_str = " ".join(documents_list)
128
+
129
+ # truncate the documents to fit
130
+ # TODO: increase to actual token count
131
+ word_count = len(documents_str.split(" "))
132
+ if word_count > max_words:
133
  logger.info("truncating documents to fit...")
134
+ documents_str = " ".join(documents_str.split(" ")[0:max_words])
135
+ logger.info(f"Documents after truncation: {documents_str}")
136
 
137
+ return documents_str
138
 
139
+ def prepare_prompt(
140
+ self,
141
+ question: str,
142
+ matched_documents: pd.DataFrame,
143
+ text_before_prompt: str,
144
+ text_before_documents: str,
145
+ ) -> str:
146
  """
147
+ Prepare the prompt with prompt engineering.
148
  """
149
+ documents_str: str = self.prepare_documents(matched_documents, max_words=self.cfg.max_words)
150
+ return text_before_documents + documents_str + text_before_prompt + question
 
 
151
 
152
+ def get_gpt_response(self, **completion_kwargs):
 
153
  # Call the API to generate a response
154
+ logger.info(f"querying GPT...")
155
  try:
156
+ return openai.Completion.create(**completion_kwargs)
 
 
 
 
 
 
 
157
 
158
  except Exception as e:
159
  # log the error and return a generic response instead.
160
+ logger.exception("Error connecting to OpenAI API. See traceback:")
161
+ response = {"choices": [{"text": "We're having trouble connecting to OpenAI right now... Try again soon!"}]}
162
+ return response
163
 
164
+ def generate_response(self, prompt: str, matched_documents: pd.DataFrame, unknown_prompt: str) -> str:
165
+ """
166
+ Generate a response based on the retrieved documents.
167
+ """
168
+ if len(matched_documents) == 0:
169
+ # No matching documents were retrieved, return
170
+ return unknown_prompt
171
+
172
+ logger.info(f"Prompt: {prompt}")
173
+ response = self.get_gpt_response(prompt=prompt, **self.cfg.completion_kwargs)
174
+ response_str = response["choices"][0]["text"]
175
+ logger.info(f"GPT Response:\n{response_str}")
176
+ return response_str
177
 
178
+ def add_sources(self, response: str, matched_documents: pd.DataFrame, sep: str, format: str):
179
  """
180
  Add sources fromt the matched documents to the response.
181
  """
 
 
182
 
183
  urls = matched_documents.url.to_list()
184
  names = matched_documents.name.to_list()
 
197
 
198
  return response
199
 
200
+ def check_response_relevance(
201
+ self, response: str, engine: str, unk_embedding: np.array, unk_threshold: float
202
+ ) -> bool:
203
+ """Check to see if a response is relevant to the chatbot's knowledge or not.
204
+
205
+ We assume we've prompt-engineered our bot to say a response is unrelated to the context if it isn't relevant.
206
+ Here, we compare the embedding of the response to the embedding of the prompt-engineered "I don't know" embedding.
207
+
208
+ set the unk_threshold to 0 to essentially turn off this feature.
209
+ """
210
+ response_embedding = get_embedding(
211
+ response,
212
+ engine=engine,
213
+ )
214
+ score = cosine_similarity(response_embedding, unk_embedding)
215
+ logger.info(f"UNK score: {score}")
216
+
217
+ # Likely that the answer is meaningful, add the top sources
218
+ return score < unk_threshold
219
+
220
+ def format_response(self, response: str, matched_documents: pd.DataFrame, text_after_response: str) -> str:
221
  """
222
  Format the response by adding the sources if necessary, and a disclaimer prompt.
223
  """
 
224
  sep = self.cfg.separator
 
225
 
226
+ is_relevant = self.check_response_relevance(
227
+ response=response,
228
+ engine=self.cfg.embedding_model,
229
+ unk_embedding=self.unk_embedding,
230
+ unk_threshold=self.cfg.unknown_threshold,
231
+ )
232
+ if is_relevant:
233
+ # Passes our relevance detection mechanism that the answer is meaningful, add the top sources
234
+ response = self.add_sources(
235
+ response=response,
236
+ matched_documents=matched_documents,
237
+ sep=self.cfg.separator,
238
+ format=self.cfg.link_format,
239
  )
 
 
 
 
 
240
 
241
  response += f"{sep}{sep}{sep}{text_after_response}{sep}"
242
 
 
249
 
250
  logger.info(f"User Question:\n{question}")
251
 
252
+ matched_documents = self.rank_documents(
253
+ documents=self.documents,
254
+ query=question,
255
+ top_k=self.cfg.top_k,
256
+ thresh=self.cfg.thresh,
257
+ engine=self.cfg.embedding_model,
258
+ )
259
+ prompt = self.prepare_prompt(
260
+ question=question,
261
+ matched_documents=matched_documents,
262
+ text_before_prompt=self.cfg.text_before_prompt,
263
+ text_before_documents=self.cfg.text_before_documents,
264
+ )
265
+ response = self.generate_response(prompt, matched_documents, self.cfg.unknown_prompt)
266
+ formatted_output = self.format_response(
267
+ response, matched_documents, text_after_response=self.cfg.text_after_response
268
+ )
269
 
270
  return formatted_output