Spaces:
Runtime error
Runtime error
big spring cleaning
Browse files- buster/busterbot.py +34 -58
- buster/completers/base.py +2 -0
- buster/formatters/prompts.py +2 -1
buster/busterbot.py
CHANGED
@@ -7,17 +7,19 @@ import pandas as pd
|
|
7 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
8 |
|
9 |
from buster.completers import get_completer
|
10 |
-
from buster.
|
11 |
-
|
12 |
-
ResponseFormatter,
|
13 |
-
Source,
|
14 |
-
response_formatter_factory,
|
15 |
-
)
|
16 |
|
17 |
logger = logging.getLogger(__name__)
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@dataclass
|
22 |
class BusterConfig:
|
23 |
"""Configuration object for a chatbot.
|
@@ -36,7 +38,7 @@ class BusterConfig:
|
|
36 |
source: the source of the document to consider
|
37 |
"""
|
38 |
|
39 |
-
documents_file: str = "
|
40 |
embedding_model: str = "text-embedding-ada-002"
|
41 |
top_k: int = 3
|
42 |
thresh: float = 0.7
|
@@ -58,9 +60,8 @@ class BusterConfig:
|
|
58 |
},
|
59 |
}
|
60 |
)
|
61 |
-
response_format: str = "slack"
|
62 |
unknown_prompt: str = "I Don't know how to answer your question."
|
63 |
-
|
64 |
source: str = ""
|
65 |
|
66 |
|
@@ -91,9 +92,13 @@ class Buster:
|
|
91 |
self.cfg = cfg
|
92 |
self.completer = get_completer(cfg.completer_cfg)
|
93 |
self.unk_embedding = self.get_embedding(self.cfg.unknown_prompt, engine=self.cfg.embedding_model)
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
)
|
|
|
97 |
logger.info(f"Config Updated.")
|
98 |
|
99 |
@lru_cache
|
@@ -129,38 +134,8 @@ class Buster:
|
|
129 |
|
130 |
return matched_documents
|
131 |
|
132 |
-
def prepare_documents(self, matched_documents: pd.DataFrame, max_words: int) -> str:
|
133 |
-
# gather the documents in one large plaintext variable
|
134 |
-
documents_list = matched_documents.content.to_list()
|
135 |
-
documents_str = ""
|
136 |
-
for idx, doc in enumerate(documents_list):
|
137 |
-
documents_str += f"<DOCUMENT> {doc} <\DOCUMENT>"
|
138 |
-
|
139 |
-
# truncate the documents to fit
|
140 |
-
# TODO: increase to actual token count
|
141 |
-
word_count = len(documents_str.split(" "))
|
142 |
-
if word_count > max_words:
|
143 |
-
logger.info("truncating documents to fit...")
|
144 |
-
documents_str = " ".join(documents_str.split(" ")[0:max_words])
|
145 |
-
logger.info(f"Documents after truncation: {documents_str}")
|
146 |
-
|
147 |
-
return documents_str
|
148 |
-
|
149 |
-
def add_sources(
|
150 |
-
self,
|
151 |
-
matched_documents: pd.DataFrame,
|
152 |
-
):
|
153 |
-
sources = (
|
154 |
-
Source(
|
155 |
-
source=dct["source"], title=dct["title"], url=dct["url"], question_similarity=dct["similarity"] * 100
|
156 |
-
)
|
157 |
-
for dct in matched_documents.to_dict(orient="records")
|
158 |
-
)
|
159 |
-
|
160 |
-
return sources
|
161 |
-
|
162 |
def check_response_relevance(
|
163 |
-
self,
|
164 |
) -> bool:
|
165 |
"""Check to see if a response is relevant to the chatbot's knowledge or not.
|
166 |
|
@@ -170,7 +145,7 @@ class Buster:
|
|
170 |
set the unk_threshold to 0 to essentially turn off this feature.
|
171 |
"""
|
172 |
response_embedding = self.get_embedding(
|
173 |
-
|
174 |
engine=engine,
|
175 |
)
|
176 |
score = cosine_similarity(response_embedding, unk_embedding)
|
@@ -179,7 +154,7 @@ class Buster:
|
|
179 |
# Likely that the answer is meaningful, add the top sources
|
180 |
return score < unk_threshold
|
181 |
|
182 |
-
def process_input(self, user_input: str
|
183 |
"""
|
184 |
Main function to process the input question and generate a formatted output.
|
185 |
"""
|
@@ -199,28 +174,29 @@ class Buster:
|
|
199 |
)
|
200 |
|
201 |
if len(matched_documents) == 0:
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
documents: str = self.prepare_documents(matched_documents, max_words=self.cfg.max_words)
|
208 |
-
response: Response = self.completer.generate_response(user_input, documents)
|
209 |
-
logger.info(f"GPT Response:\n{response.text}")
|
210 |
|
211 |
-
|
|
|
|
|
|
|
212 |
|
213 |
# check for relevance
|
214 |
relevant = self.check_response_relevance(
|
215 |
-
completion
|
216 |
engine=self.cfg.embedding_model,
|
217 |
unk_embedding=self.unk_embedding,
|
218 |
unk_threshold=self.cfg.unknown_threshold,
|
219 |
)
|
220 |
if not relevant:
|
|
|
221 |
# answer generated was the chatbot saying it doesn't know how to answer
|
222 |
-
|
223 |
-
|
224 |
-
sources = tuple()
|
225 |
|
226 |
-
|
|
|
|
7 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
8 |
|
9 |
from buster.completers import get_completer
|
10 |
+
from buster.completers.base import Completion
|
11 |
+
from buster.formatters.prompts import SystemPromptFormatter
|
|
|
|
|
|
|
|
|
12 |
|
13 |
logger = logging.getLogger(__name__)
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
|
17 |
+
@dataclass(slots=True)
|
18 |
+
class Response:
|
19 |
+
completion: Completion
|
20 |
+
matched_documents: pd.DataFrame | None = None
|
21 |
+
|
22 |
+
|
23 |
@dataclass
|
24 |
class BusterConfig:
|
25 |
"""Configuration object for a chatbot.
|
|
|
38 |
source: the source of the document to consider
|
39 |
"""
|
40 |
|
41 |
+
documents_file: str = ""
|
42 |
embedding_model: str = "text-embedding-ada-002"
|
43 |
top_k: int = 3
|
44 |
thresh: float = 0.7
|
|
|
60 |
},
|
61 |
}
|
62 |
)
|
|
|
63 |
unknown_prompt: str = "I Don't know how to answer your question."
|
64 |
+
response_format: str = "slack"
|
65 |
source: str = ""
|
66 |
|
67 |
|
|
|
92 |
self.cfg = cfg
|
93 |
self.completer = get_completer(cfg.completer_cfg)
|
94 |
self.unk_embedding = self.get_embedding(self.cfg.unknown_prompt, engine=self.cfg.embedding_model)
|
95 |
+
|
96 |
+
self.prompt_formatter = SystemPromptFormatter(
|
97 |
+
text_before_docs=self.cfg.completer_cfg["text_before_documents"],
|
98 |
+
text_after_docs=self.cfg.completer_cfg["text_before_prompt"],
|
99 |
+
max_words=self.cfg.max_words,
|
100 |
)
|
101 |
+
|
102 |
logger.info(f"Config Updated.")
|
103 |
|
104 |
@lru_cache
|
|
|
134 |
|
135 |
return matched_documents
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
def check_response_relevance(
|
138 |
+
self, completion_text: str, engine: str, unk_embedding: np.array, unk_threshold: float
|
139 |
) -> bool:
|
140 |
"""Check to see if a response is relevant to the chatbot's knowledge or not.
|
141 |
|
|
|
145 |
set the unk_threshold to 0 to essentially turn off this feature.
|
146 |
"""
|
147 |
response_embedding = self.get_embedding(
|
148 |
+
completion_text,
|
149 |
engine=engine,
|
150 |
)
|
151 |
score = cosine_similarity(response_embedding, unk_embedding)
|
|
|
154 |
# Likely that the answer is meaningful, add the top sources
|
155 |
return score < unk_threshold
|
156 |
|
157 |
+
def process_input(self, user_input: str) -> str:
|
158 |
"""
|
159 |
Main function to process the input question and generate a formatted output.
|
160 |
"""
|
|
|
174 |
)
|
175 |
|
176 |
if len(matched_documents) == 0:
|
177 |
+
logger.warning("No documents found...")
|
178 |
+
completion = Completion(text="No documents found.")
|
179 |
+
matched_documents = pd.DataFrame(columns=matched_documents.columns)
|
180 |
+
response = Response(completion=completion, matched_documents=matched_documents)
|
181 |
+
return response
|
|
|
|
|
|
|
182 |
|
183 |
+
# prepare the prompt
|
184 |
+
system_prompt = self.prompt_formatter.format(matched_documents)
|
185 |
+
completion: Completion = self.completer.generate_response(user_input=user_input, system_prompt=system_prompt)
|
186 |
+
logger.info(f"GPT Response:\n{completion.text}")
|
187 |
|
188 |
# check for relevance
|
189 |
relevant = self.check_response_relevance(
|
190 |
+
completion_text=completion.text,
|
191 |
engine=self.cfg.embedding_model,
|
192 |
unk_embedding=self.unk_embedding,
|
193 |
unk_threshold=self.cfg.unknown_threshold,
|
194 |
)
|
195 |
if not relevant:
|
196 |
+
matched_documents = pd.DataFrame(columns=matched_documents.columns)
|
197 |
# answer generated was the chatbot saying it doesn't know how to answer
|
198 |
+
# uncomment override completion with unknown prompt
|
199 |
+
# completion = Completion(text=self.cfg.unknown_prompt)
|
|
|
200 |
|
201 |
+
response = Response(completion=completion, matched_documents=matched_documents)
|
202 |
+
return response
|
buster/completers/base.py
CHANGED
@@ -19,12 +19,14 @@ if promptlayer_api_key:
|
|
19 |
openai = promptlayer.openai
|
20 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
21 |
|
|
|
22 |
@dataclass(slots=True)
|
23 |
class Completion:
|
24 |
text: str
|
25 |
error: bool = False
|
26 |
error_msg: str | None = None
|
27 |
|
|
|
28 |
class Completer(ABC):
|
29 |
def __init__(self, completion_kwargs: dict):
|
30 |
self.completion_kwargs = completion_kwargs
|
|
|
19 |
openai = promptlayer.openai
|
20 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
21 |
|
22 |
+
|
23 |
@dataclass(slots=True)
|
24 |
class Completion:
|
25 |
text: str
|
26 |
error: bool = False
|
27 |
error_msg: str | None = None
|
28 |
|
29 |
+
|
30 |
class Completer(ABC):
|
31 |
def __init__(self, completion_kwargs: dict):
|
32 |
self.completion_kwargs = completion_kwargs
|
buster/formatters/prompts.py
CHANGED
@@ -6,6 +6,7 @@ import pandas as pd
|
|
6 |
logger = logging.getLogger(__name__)
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
|
|
|
9 |
@dataclass
|
10 |
class SystemPromptFormatter:
|
11 |
text_before_docs: str = ""
|
@@ -38,4 +39,4 @@ class SystemPromptFormatter:
|
|
38 |
"""
|
39 |
documents = self.format_documents(matched_documents, max_words=self.max_words)
|
40 |
system_prompt = self.text_before_docs + documents + self.text_after_docs
|
41 |
-
return system_prompt
|
|
|
6 |
logger = logging.getLogger(__name__)
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
|
9 |
+
|
10 |
@dataclass
|
11 |
class SystemPromptFormatter:
|
12 |
text_before_docs: str = ""
|
|
|
39 |
"""
|
40 |
documents = self.format_documents(matched_documents, max_words=self.max_words)
|
41 |
system_prompt = self.text_before_docs + documents + self.text_after_docs
|
42 |
+
return system_prompt
|