Spaces:
Runtime error
Runtime error
Huggingface support (#28)
Browse files* huggingface support
* PR
- buster/docparser.py +30 -81
- buster/parser.py +152 -0
buster/docparser.py
CHANGED
@@ -1,41 +1,47 @@
|
|
1 |
import glob
|
2 |
-
import math
|
3 |
import os
|
4 |
|
5 |
-
import bs4
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import tiktoken
|
9 |
from bs4 import BeautifulSoup
|
10 |
from openai.embeddings_utils import get_embedding
|
11 |
|
|
|
|
|
12 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
13 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
14 |
|
15 |
|
16 |
-
BASE_URL_MILA = "https://docs.mila.quebec/"
|
17 |
-
BASE_URL_ORION = "https://orion.readthedocs.io/en/stable/"
|
18 |
-
BASE_URL_PYTORCH = "https://pytorch.org/docs/stable/"
|
19 |
-
|
20 |
-
|
21 |
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
|
22 |
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
def get_all_documents(
|
38 |
-
root_dir: str, base_url: str, min_section_length: int = 100, max_section_length: int = 2000
|
39 |
) -> pd.DataFrame:
|
40 |
"""Parse all HTML files in `root_dir`, and extract all sections.
|
41 |
|
@@ -44,48 +50,6 @@ def get_all_documents(
|
|
44 |
"""
|
45 |
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
|
46 |
|
47 |
-
def get_all_subsections(soup: BeautifulSoup) -> tuple[list[str], list[str], list[str]]:
|
48 |
-
found = soup.find_all("a", href=True, class_="headerlink")
|
49 |
-
|
50 |
-
sections = []
|
51 |
-
urls = []
|
52 |
-
names = []
|
53 |
-
for section_found in found:
|
54 |
-
section_soup = section_found.parent.parent
|
55 |
-
section_href = section_soup.find_all("a", href=True, class_="headerlink")
|
56 |
-
|
57 |
-
# If sections has subsections, keep only the part before the first subsection
|
58 |
-
if len(section_href) > 1 and section_soup.section is not None:
|
59 |
-
section_siblings = list(section_soup.section.previous_siblings)[::-1]
|
60 |
-
section = parse_section(section_siblings)
|
61 |
-
else:
|
62 |
-
section = parse_section(section_soup.children)
|
63 |
-
|
64 |
-
# Remove special characters, plus newlines in some url and section names.
|
65 |
-
section = section.strip()
|
66 |
-
url = section_found["href"].strip().replace("\n", "")
|
67 |
-
name = section_found.parent.text.strip()[:-1].replace("\n", "")
|
68 |
-
|
69 |
-
# If text is too long, split into chunks of equal sizes
|
70 |
-
if len(section) > max_section_length:
|
71 |
-
n_chunks = math.ceil(len(section) / float(max_section_length))
|
72 |
-
separator_index = math.floor(len(section) / n_chunks)
|
73 |
-
|
74 |
-
section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
|
75 |
-
url_chunks = [url] * n_chunks
|
76 |
-
name_chunks = [name] * n_chunks
|
77 |
-
|
78 |
-
sections.extend(section_chunks)
|
79 |
-
urls.extend(url_chunks)
|
80 |
-
names.extend(name_chunks)
|
81 |
-
# If text is not too short, add in 1 chunk
|
82 |
-
elif len(section) > min_section_length:
|
83 |
-
sections.append(section)
|
84 |
-
urls.append(url)
|
85 |
-
names.append(name)
|
86 |
-
|
87 |
-
return sections, urls, names
|
88 |
-
|
89 |
sections = []
|
90 |
urls = []
|
91 |
names = []
|
@@ -95,12 +59,11 @@ def get_all_documents(
|
|
95 |
source = f.read()
|
96 |
|
97 |
soup = BeautifulSoup(source, "html.parser")
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
urls.extend(urls_file)
|
103 |
-
|
104 |
names.extend(names_file)
|
105 |
|
106 |
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
|
@@ -138,7 +101,8 @@ def read_documents(filepath: str) -> pd.DataFrame:
|
|
138 |
|
139 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
140 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
141 |
-
|
|
|
142 |
return df
|
143 |
|
144 |
|
@@ -154,18 +118,3 @@ def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame:
|
|
154 |
df = precompute_embeddings(df)
|
155 |
write_documents(output_file, df)
|
156 |
return df
|
157 |
-
|
158 |
-
|
159 |
-
if __name__ == "__main__":
|
160 |
-
root_dir = "/home/hadrien/perso/mila-docs/output/"
|
161 |
-
save_filepath = "data/documents.tar.gz"
|
162 |
-
|
163 |
-
# How to write
|
164 |
-
documents_df = get_all_documents(root_dir)
|
165 |
-
write_documents(save_filepath, documents_df)
|
166 |
-
|
167 |
-
# How to load
|
168 |
-
documents_df = read_documents(save_filepath)
|
169 |
-
|
170 |
-
# precompute the document embeddings
|
171 |
-
df = generate_embeddings(filepath=save_filepath, output_file="data/document_embeddings.tar.gz")
|
|
|
1 |
import glob
|
|
|
2 |
import os
|
3 |
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import tiktoken
|
7 |
from bs4 import BeautifulSoup
|
8 |
from openai.embeddings_utils import get_embedding
|
9 |
|
10 |
+
from buster.parser import HuggingfaceParser, Parser, SphinxParser
|
11 |
+
|
12 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
13 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
|
17 |
|
18 |
|
19 |
+
supported_docs = {
|
20 |
+
"mila": {
|
21 |
+
"base_url": "https://docs.mila.quebec/",
|
22 |
+
"filename": "documents_mila.tar.gz",
|
23 |
+
"parser": SphinxParser,
|
24 |
+
},
|
25 |
+
"orion": {
|
26 |
+
"base_url": "https://orion.readthedocs.io/en/stable/",
|
27 |
+
"filename": "documents_orion.tar.gz",
|
28 |
+
"parser": SphinxParser,
|
29 |
+
},
|
30 |
+
"pytorch": {
|
31 |
+
"base_url": "https://pytorch.org/docs/stable/",
|
32 |
+
"filename": "documents_pytorch.tar.gz",
|
33 |
+
"parser": SphinxParser,
|
34 |
+
},
|
35 |
+
"huggingface": {
|
36 |
+
"base_url": "https://huggingface.co/docs/transformers/",
|
37 |
+
"filename": "documents_huggingface.tar.gz",
|
38 |
+
"parser": HuggingfaceParser,
|
39 |
+
},
|
40 |
+
}
|
41 |
|
42 |
|
43 |
def get_all_documents(
|
44 |
+
root_dir: str, base_url: str, parser: Parser, min_section_length: int = 100, max_section_length: int = 2000
|
45 |
) -> pd.DataFrame:
|
46 |
"""Parse all HTML files in `root_dir`, and extract all sections.
|
47 |
|
|
|
50 |
"""
|
51 |
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
sections = []
|
54 |
urls = []
|
55 |
names = []
|
|
|
59 |
source = f.read()
|
60 |
|
61 |
soup = BeautifulSoup(source, "html.parser")
|
62 |
+
soup_parser = parser(soup, base_url, file, min_section_length, max_section_length)
|
63 |
+
sections_file, urls_file, names_file = soup_parser.parse()
|
64 |
|
65 |
+
sections.extend(sections_file)
|
66 |
urls.extend(urls_file)
|
|
|
67 |
names.extend(names_file)
|
68 |
|
69 |
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
|
|
|
101 |
|
102 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
103 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
104 |
+
# TODO are there unexpected consequences of allowing endoftext?
|
105 |
+
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x, allowed_special={"<|endoftext|>"})))
|
106 |
return df
|
107 |
|
108 |
|
|
|
118 |
df = precompute_embeddings(df)
|
119 |
write_documents(output_file, df)
|
120 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buster/parser.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
|
4 |
+
import bs4
|
5 |
+
import pandas as pd
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
|
8 |
+
|
9 |
+
def parse_section(nodes: list[bs4.element.NavigableString]) -> str:
|
10 |
+
section = []
|
11 |
+
for node in nodes:
|
12 |
+
if node.name == "table":
|
13 |
+
node_text = pd.read_html(node.prettify())[0].to_markdown(index=False, tablefmt="github")
|
14 |
+
elif node.name == "script":
|
15 |
+
continue
|
16 |
+
else:
|
17 |
+
node_text = node.text
|
18 |
+
section.append(node_text)
|
19 |
+
section = "".join(section)
|
20 |
+
|
21 |
+
return section
|
22 |
+
|
23 |
+
|
24 |
+
class Parser:
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
soup: BeautifulSoup,
|
28 |
+
base_url: str,
|
29 |
+
filename: str,
|
30 |
+
min_section_length: int = 100,
|
31 |
+
max_section_length: int = 2000,
|
32 |
+
):
|
33 |
+
self.soup = soup
|
34 |
+
self.base_url = base_url
|
35 |
+
self.filename = filename
|
36 |
+
self.min_section_length = min_section_length
|
37 |
+
self.max_section_length = max_section_length
|
38 |
+
|
39 |
+
def parse(self) -> tuple[list[str], list[str], list[str]]:
|
40 |
+
...
|
41 |
+
|
42 |
+
def find_sections(self) -> bs4.element.ResultSet:
|
43 |
+
...
|
44 |
+
|
45 |
+
def build_url(self, suffix: str) -> str:
|
46 |
+
...
|
47 |
+
|
48 |
+
|
49 |
+
class SphinxParser(Parser):
|
50 |
+
def parse(self) -> tuple[list[str], list[str], list[str]]:
|
51 |
+
found = self.find_sections()
|
52 |
+
|
53 |
+
sections = []
|
54 |
+
urls = []
|
55 |
+
names = []
|
56 |
+
for i in range(len(found)):
|
57 |
+
section_found = found[i]
|
58 |
+
|
59 |
+
section_soup = section_found.parent.parent
|
60 |
+
section_href = section_soup.find_all("a", href=True, class_="headerlink")
|
61 |
+
|
62 |
+
# If sections has subsections, keep only the part before the first subsection
|
63 |
+
if len(section_href) > 1 and section_soup.section is not None:
|
64 |
+
section_siblings = list(section_soup.section.previous_siblings)[::-1]
|
65 |
+
section = parse_section(section_siblings)
|
66 |
+
else:
|
67 |
+
section = parse_section(section_soup.children)
|
68 |
+
|
69 |
+
# Remove special characters, plus newlines in some url and section names.
|
70 |
+
section = section.strip()
|
71 |
+
url = section_found["href"].strip().replace("\n", "")
|
72 |
+
name = section_found.parent.text.strip()[:-1].replace("\n", "")
|
73 |
+
|
74 |
+
url = self.build_url(url)
|
75 |
+
|
76 |
+
# If text is too long, split into chunks of equal sizes
|
77 |
+
if len(section) > self.max_section_length:
|
78 |
+
n_chunks = math.ceil(len(section) / float(self.max_section_length))
|
79 |
+
separator_index = math.floor(len(section) / n_chunks)
|
80 |
+
|
81 |
+
section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
|
82 |
+
url_chunks = [url] * n_chunks
|
83 |
+
name_chunks = [name] * n_chunks
|
84 |
+
|
85 |
+
sections.extend(section_chunks)
|
86 |
+
urls.extend(url_chunks)
|
87 |
+
names.extend(name_chunks)
|
88 |
+
# If text is not too short, add in 1 chunk
|
89 |
+
elif len(section) > self.min_section_length:
|
90 |
+
sections.append(section)
|
91 |
+
urls.append(url)
|
92 |
+
names.append(name)
|
93 |
+
|
94 |
+
return sections, urls, names
|
95 |
+
|
96 |
+
def find_sections(self) -> bs4.element.ResultSet:
|
97 |
+
return self.soup.find_all("a", href=True, class_="headerlink")
|
98 |
+
|
99 |
+
def build_url(self, suffix: str) -> str:
|
100 |
+
return self.base_url + self.filename + suffix
|
101 |
+
|
102 |
+
|
103 |
+
class HuggingfaceParser(Parser):
|
104 |
+
def parse(self) -> tuple[list[str], list[str], list[str]]:
|
105 |
+
found = self.find_sections()
|
106 |
+
|
107 |
+
sections = []
|
108 |
+
urls = []
|
109 |
+
names = []
|
110 |
+
for i in range(len(found)):
|
111 |
+
section_href = found[i].find("a", href=True, class_="header-link")
|
112 |
+
|
113 |
+
section_nodes = []
|
114 |
+
for element in found[i].find_next_siblings():
|
115 |
+
if i + 1 < len(found) and element == found[i + 1]:
|
116 |
+
break
|
117 |
+
section_nodes.append(element)
|
118 |
+
section = parse_section(section_nodes)
|
119 |
+
|
120 |
+
# Remove special characters, plus newlines in some url and section names.
|
121 |
+
section = section.strip()
|
122 |
+
url = section_href["href"].strip().replace("\n", "")
|
123 |
+
name = found[i].text.strip().replace("\n", "")
|
124 |
+
|
125 |
+
url = self.build_url(url)
|
126 |
+
|
127 |
+
# If text is too long, split into chunks of equal sizes
|
128 |
+
if len(section) > self.max_section_length:
|
129 |
+
n_chunks = math.ceil(len(section) / float(self.max_section_length))
|
130 |
+
separator_index = math.floor(len(section) / n_chunks)
|
131 |
+
|
132 |
+
section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
|
133 |
+
url_chunks = [url] * n_chunks
|
134 |
+
name_chunks = [name] * n_chunks
|
135 |
+
|
136 |
+
sections.extend(section_chunks)
|
137 |
+
urls.extend(url_chunks)
|
138 |
+
names.extend(name_chunks)
|
139 |
+
# If text is not too short, add in 1 chunk
|
140 |
+
elif len(section) > self.min_section_length:
|
141 |
+
sections.append(section)
|
142 |
+
urls.append(url)
|
143 |
+
names.append(name)
|
144 |
+
|
145 |
+
return sections, urls, names
|
146 |
+
|
147 |
+
def find_sections(self) -> bs4.element.ResultSet:
|
148 |
+
return self.soup.find_all(["h1", "h2", "h3"], class_="relative group")
|
149 |
+
|
150 |
+
def build_url(self, suffix: str) -> str:
|
151 |
+
# The splitext is to remove the .html extension
|
152 |
+
return self.base_url + os.path.splitext(self.filename)[0] + suffix
|