hbertrand commited on
Commit
f5ec40e
·
unverified ·
1 Parent(s): 408fe87

Huggingface support (#28)

Browse files

* huggingface support

* PR

Files changed (2) hide show
  1. buster/docparser.py +30 -81
  2. buster/parser.py +152 -0
buster/docparser.py CHANGED
@@ -1,41 +1,47 @@
1
  import glob
2
- import math
3
  import os
4
 
5
- import bs4
6
  import numpy as np
7
  import pandas as pd
8
  import tiktoken
9
  from bs4 import BeautifulSoup
10
  from openai.embeddings_utils import get_embedding
11
 
 
 
12
  EMBEDDING_MODEL = "text-embedding-ada-002"
13
  EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
14
 
15
 
16
- BASE_URL_MILA = "https://docs.mila.quebec/"
17
- BASE_URL_ORION = "https://orion.readthedocs.io/en/stable/"
18
- BASE_URL_PYTORCH = "https://pytorch.org/docs/stable/"
19
-
20
-
21
  PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
22
 
23
 
24
- def parse_section(nodes: list[bs4.element.NavigableString]) -> str:
25
- section = []
26
- for node in nodes:
27
- if node.name == "table":
28
- node_text = pd.read_html(node.prettify())[0].to_markdown(index=False, tablefmt="github")
29
- else:
30
- node_text = node.text
31
- section.append(node_text)
32
- section = "".join(section)[1:]
33
-
34
- return section
 
 
 
 
 
 
 
 
 
 
 
35
 
36
 
37
  def get_all_documents(
38
- root_dir: str, base_url: str, min_section_length: int = 100, max_section_length: int = 2000
39
  ) -> pd.DataFrame:
40
  """Parse all HTML files in `root_dir`, and extract all sections.
41
 
@@ -44,48 +50,6 @@ def get_all_documents(
44
  """
45
  files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
46
 
47
- def get_all_subsections(soup: BeautifulSoup) -> tuple[list[str], list[str], list[str]]:
48
- found = soup.find_all("a", href=True, class_="headerlink")
49
-
50
- sections = []
51
- urls = []
52
- names = []
53
- for section_found in found:
54
- section_soup = section_found.parent.parent
55
- section_href = section_soup.find_all("a", href=True, class_="headerlink")
56
-
57
- # If sections has subsections, keep only the part before the first subsection
58
- if len(section_href) > 1 and section_soup.section is not None:
59
- section_siblings = list(section_soup.section.previous_siblings)[::-1]
60
- section = parse_section(section_siblings)
61
- else:
62
- section = parse_section(section_soup.children)
63
-
64
- # Remove special characters, plus newlines in some url and section names.
65
- section = section.strip()
66
- url = section_found["href"].strip().replace("\n", "")
67
- name = section_found.parent.text.strip()[:-1].replace("\n", "")
68
-
69
- # If text is too long, split into chunks of equal sizes
70
- if len(section) > max_section_length:
71
- n_chunks = math.ceil(len(section) / float(max_section_length))
72
- separator_index = math.floor(len(section) / n_chunks)
73
-
74
- section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
75
- url_chunks = [url] * n_chunks
76
- name_chunks = [name] * n_chunks
77
-
78
- sections.extend(section_chunks)
79
- urls.extend(url_chunks)
80
- names.extend(name_chunks)
81
- # If text is not too short, add in 1 chunk
82
- elif len(section) > min_section_length:
83
- sections.append(section)
84
- urls.append(url)
85
- names.append(name)
86
-
87
- return sections, urls, names
88
-
89
  sections = []
90
  urls = []
91
  names = []
@@ -95,12 +59,11 @@ def get_all_documents(
95
  source = f.read()
96
 
97
  soup = BeautifulSoup(source, "html.parser")
98
- sections_file, urls_file, names_file = get_all_subsections(soup)
99
- sections.extend(sections_file)
100
 
101
- urls_file = [base_url + file + url for url in urls_file]
102
  urls.extend(urls_file)
103
-
104
  names.extend(names_file)
105
 
106
  documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
@@ -138,7 +101,8 @@ def read_documents(filepath: str) -> pd.DataFrame:
138
 
139
  def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
140
  encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
141
- df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x)))
 
142
  return df
143
 
144
 
@@ -154,18 +118,3 @@ def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame:
154
  df = precompute_embeddings(df)
155
  write_documents(output_file, df)
156
  return df
157
-
158
-
159
- if __name__ == "__main__":
160
- root_dir = "/home/hadrien/perso/mila-docs/output/"
161
- save_filepath = "data/documents.tar.gz"
162
-
163
- # How to write
164
- documents_df = get_all_documents(root_dir)
165
- write_documents(save_filepath, documents_df)
166
-
167
- # How to load
168
- documents_df = read_documents(save_filepath)
169
-
170
- # precompute the document embeddings
171
- df = generate_embeddings(filepath=save_filepath, output_file="data/document_embeddings.tar.gz")
 
1
  import glob
 
2
  import os
3
 
 
4
  import numpy as np
5
  import pandas as pd
6
  import tiktoken
7
  from bs4 import BeautifulSoup
8
  from openai.embeddings_utils import get_embedding
9
 
10
+ from buster.parser import HuggingfaceParser, Parser, SphinxParser
11
+
12
  EMBEDDING_MODEL = "text-embedding-ada-002"
13
  EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
14
 
15
 
 
 
 
 
 
16
  PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
17
 
18
 
19
+ supported_docs = {
20
+ "mila": {
21
+ "base_url": "https://docs.mila.quebec/",
22
+ "filename": "documents_mila.tar.gz",
23
+ "parser": SphinxParser,
24
+ },
25
+ "orion": {
26
+ "base_url": "https://orion.readthedocs.io/en/stable/",
27
+ "filename": "documents_orion.tar.gz",
28
+ "parser": SphinxParser,
29
+ },
30
+ "pytorch": {
31
+ "base_url": "https://pytorch.org/docs/stable/",
32
+ "filename": "documents_pytorch.tar.gz",
33
+ "parser": SphinxParser,
34
+ },
35
+ "huggingface": {
36
+ "base_url": "https://huggingface.co/docs/transformers/",
37
+ "filename": "documents_huggingface.tar.gz",
38
+ "parser": HuggingfaceParser,
39
+ },
40
+ }
41
 
42
 
43
  def get_all_documents(
44
+ root_dir: str, base_url: str, parser: Parser, min_section_length: int = 100, max_section_length: int = 2000
45
  ) -> pd.DataFrame:
46
  """Parse all HTML files in `root_dir`, and extract all sections.
47
 
 
50
  """
51
  files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  sections = []
54
  urls = []
55
  names = []
 
59
  source = f.read()
60
 
61
  soup = BeautifulSoup(source, "html.parser")
62
+ soup_parser = parser(soup, base_url, file, min_section_length, max_section_length)
63
+ sections_file, urls_file, names_file = soup_parser.parse()
64
 
65
+ sections.extend(sections_file)
66
  urls.extend(urls_file)
 
67
  names.extend(names_file)
68
 
69
  documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
 
101
 
102
  def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
103
  encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
104
+ # TODO are there unexpected consequences of allowing endoftext?
105
+ df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x, allowed_special={"<|endoftext|>"})))
106
  return df
107
 
108
 
 
118
  df = precompute_embeddings(df)
119
  write_documents(output_file, df)
120
  return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
buster/parser.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+
4
+ import bs4
5
+ import pandas as pd
6
+ from bs4 import BeautifulSoup
7
+
8
+
9
+ def parse_section(nodes: list[bs4.element.NavigableString]) -> str:
10
+ section = []
11
+ for node in nodes:
12
+ if node.name == "table":
13
+ node_text = pd.read_html(node.prettify())[0].to_markdown(index=False, tablefmt="github")
14
+ elif node.name == "script":
15
+ continue
16
+ else:
17
+ node_text = node.text
18
+ section.append(node_text)
19
+ section = "".join(section)
20
+
21
+ return section
22
+
23
+
24
+ class Parser:
25
+ def __init__(
26
+ self,
27
+ soup: BeautifulSoup,
28
+ base_url: str,
29
+ filename: str,
30
+ min_section_length: int = 100,
31
+ max_section_length: int = 2000,
32
+ ):
33
+ self.soup = soup
34
+ self.base_url = base_url
35
+ self.filename = filename
36
+ self.min_section_length = min_section_length
37
+ self.max_section_length = max_section_length
38
+
39
+ def parse(self) -> tuple[list[str], list[str], list[str]]:
40
+ ...
41
+
42
+ def find_sections(self) -> bs4.element.ResultSet:
43
+ ...
44
+
45
+ def build_url(self, suffix: str) -> str:
46
+ ...
47
+
48
+
49
+ class SphinxParser(Parser):
50
+ def parse(self) -> tuple[list[str], list[str], list[str]]:
51
+ found = self.find_sections()
52
+
53
+ sections = []
54
+ urls = []
55
+ names = []
56
+ for i in range(len(found)):
57
+ section_found = found[i]
58
+
59
+ section_soup = section_found.parent.parent
60
+ section_href = section_soup.find_all("a", href=True, class_="headerlink")
61
+
62
+ # If sections has subsections, keep only the part before the first subsection
63
+ if len(section_href) > 1 and section_soup.section is not None:
64
+ section_siblings = list(section_soup.section.previous_siblings)[::-1]
65
+ section = parse_section(section_siblings)
66
+ else:
67
+ section = parse_section(section_soup.children)
68
+
69
+ # Remove special characters, plus newlines in some url and section names.
70
+ section = section.strip()
71
+ url = section_found["href"].strip().replace("\n", "")
72
+ name = section_found.parent.text.strip()[:-1].replace("\n", "")
73
+
74
+ url = self.build_url(url)
75
+
76
+ # If text is too long, split into chunks of equal sizes
77
+ if len(section) > self.max_section_length:
78
+ n_chunks = math.ceil(len(section) / float(self.max_section_length))
79
+ separator_index = math.floor(len(section) / n_chunks)
80
+
81
+ section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
82
+ url_chunks = [url] * n_chunks
83
+ name_chunks = [name] * n_chunks
84
+
85
+ sections.extend(section_chunks)
86
+ urls.extend(url_chunks)
87
+ names.extend(name_chunks)
88
+ # If text is not too short, add in 1 chunk
89
+ elif len(section) > self.min_section_length:
90
+ sections.append(section)
91
+ urls.append(url)
92
+ names.append(name)
93
+
94
+ return sections, urls, names
95
+
96
+ def find_sections(self) -> bs4.element.ResultSet:
97
+ return self.soup.find_all("a", href=True, class_="headerlink")
98
+
99
+ def build_url(self, suffix: str) -> str:
100
+ return self.base_url + self.filename + suffix
101
+
102
+
103
+ class HuggingfaceParser(Parser):
104
+ def parse(self) -> tuple[list[str], list[str], list[str]]:
105
+ found = self.find_sections()
106
+
107
+ sections = []
108
+ urls = []
109
+ names = []
110
+ for i in range(len(found)):
111
+ section_href = found[i].find("a", href=True, class_="header-link")
112
+
113
+ section_nodes = []
114
+ for element in found[i].find_next_siblings():
115
+ if i + 1 < len(found) and element == found[i + 1]:
116
+ break
117
+ section_nodes.append(element)
118
+ section = parse_section(section_nodes)
119
+
120
+ # Remove special characters, plus newlines in some url and section names.
121
+ section = section.strip()
122
+ url = section_href["href"].strip().replace("\n", "")
123
+ name = found[i].text.strip().replace("\n", "")
124
+
125
+ url = self.build_url(url)
126
+
127
+ # If text is too long, split into chunks of equal sizes
128
+ if len(section) > self.max_section_length:
129
+ n_chunks = math.ceil(len(section) / float(self.max_section_length))
130
+ separator_index = math.floor(len(section) / n_chunks)
131
+
132
+ section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
133
+ url_chunks = [url] * n_chunks
134
+ name_chunks = [name] * n_chunks
135
+
136
+ sections.extend(section_chunks)
137
+ urls.extend(url_chunks)
138
+ names.extend(name_chunks)
139
+ # If text is not too short, add in 1 chunk
140
+ elif len(section) > self.min_section_length:
141
+ sections.append(section)
142
+ urls.append(url)
143
+ names.append(name)
144
+
145
+ return sections, urls, names
146
+
147
+ def find_sections(self) -> bs4.element.ResultSet:
148
+ return self.soup.find_all(["h1", "h2", "h3"], class_="relative group")
149
+
150
+ def build_url(self, suffix: str) -> str:
151
+ # The splitext is to remove the .html extension
152
+ return self.base_url + os.path.splitext(self.filename)[0] + suffix