Spaces:
Runtime error
Runtime error
Merge pull request #59 from marondeau/schema
Browse filesNew schema for the database, including structure information.
- buster/documents/sqlite.py +0 -122
- buster/documents/sqlite/__init__.py +3 -0
- buster/documents/sqlite/backward.py +105 -0
- buster/documents/sqlite/documents.py +155 -0
- buster/documents/sqlite/schema.py +133 -0
buster/documents/sqlite.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import sqlite3
|
2 |
-
import warnings
|
3 |
-
import zlib
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
|
8 |
-
from buster.documents.base import DocumentsManager
|
9 |
-
|
10 |
-
documents_table = """CREATE TABLE IF NOT EXISTS documents (
|
11 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
12 |
-
source TEXT NOT NULL,
|
13 |
-
title TEXT NOT NULL,
|
14 |
-
url TEXT NOT NULL,
|
15 |
-
content TEXT NOT NULL,
|
16 |
-
n_tokens INTEGER,
|
17 |
-
embedding BLOB,
|
18 |
-
current INTEGER
|
19 |
-
)"""
|
20 |
-
|
21 |
-
qa_table = """CREATE TABLE IF NOT EXISTS qa (
|
22 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
23 |
-
source TEXT NOT NULL,
|
24 |
-
prompt TEXT NOT NULL,
|
25 |
-
answer TEXT NOT NULL,
|
26 |
-
document_id_1 INTEGER,
|
27 |
-
document_id_2 INTEGER,
|
28 |
-
document_id_3 INTEGER,
|
29 |
-
label_question INTEGER,
|
30 |
-
label_answer INTEGER,
|
31 |
-
testset INTEGER,
|
32 |
-
FOREIGN KEY (document_id_1) REFERENCES documents (id),
|
33 |
-
FOREIGN KEY (document_id_2) REFERENCES documents (id),
|
34 |
-
FOREIGN KEY (document_id_3) REFERENCES documents (id)
|
35 |
-
)"""
|
36 |
-
|
37 |
-
|
38 |
-
class DocumentsDB(DocumentsManager):
|
39 |
-
"""Simple SQLite database for storing documents and questions/answers.
|
40 |
-
|
41 |
-
The database is just a file on disk. It can store documents from different sources, and it can store multiple versions of the same document (e.g. if the document is updated).
|
42 |
-
Questions/answers refer to the version of the document that was used at the time.
|
43 |
-
|
44 |
-
Example:
|
45 |
-
>>> db = DocumentsDB("/path/to/the/db.db")
|
46 |
-
>>> db.add("source", df) # df is a DataFrame containing the documents from a given source, obtained e.g. by using buster.docparser.generate_embeddings
|
47 |
-
>>> df = db.get_documents("source")
|
48 |
-
"""
|
49 |
-
|
50 |
-
def __init__(self, filepath: str):
|
51 |
-
self.db_path = filepath
|
52 |
-
self.conn = sqlite3.connect(filepath)
|
53 |
-
self.cursor = self.conn.cursor()
|
54 |
-
|
55 |
-
self.__initialize()
|
56 |
-
|
57 |
-
def __del__(self):
|
58 |
-
self.conn.close()
|
59 |
-
|
60 |
-
def __initialize(self):
|
61 |
-
"""Initialize the database."""
|
62 |
-
self.cursor.execute(documents_table)
|
63 |
-
self.cursor.execute(qa_table)
|
64 |
-
self.conn.commit()
|
65 |
-
|
66 |
-
def add(self, source: str, df: pd.DataFrame):
|
67 |
-
"""Write all documents from the dataframe into the db. All previous documents from that source will be set to `current = 0`."""
|
68 |
-
df = df.copy()
|
69 |
-
|
70 |
-
# Prepare the rows
|
71 |
-
df["source"] = source
|
72 |
-
df["current"] = 1
|
73 |
-
columns = ["source", "title", "url", "content", "current"]
|
74 |
-
if "embedding" in df.columns:
|
75 |
-
columns.extend(
|
76 |
-
[
|
77 |
-
"n_tokens",
|
78 |
-
"embedding",
|
79 |
-
]
|
80 |
-
)
|
81 |
-
|
82 |
-
# Check that the embeddings are float32
|
83 |
-
if not df["embedding"].iloc[0].dtype == np.float32:
|
84 |
-
warnings.warn(
|
85 |
-
f"Embeddings are not float32, converting them to float32 from {df['embedding'].iloc[0].dtype}.",
|
86 |
-
RuntimeWarning,
|
87 |
-
)
|
88 |
-
df["embedding"] = df["embedding"].apply(lambda x: x.astype(np.float32))
|
89 |
-
|
90 |
-
# ZLIB compress the embeddings
|
91 |
-
df["embedding"] = df["embedding"].apply(lambda x: sqlite3.Binary(zlib.compress(x.tobytes())))
|
92 |
-
|
93 |
-
data = df[columns].values.tolist()
|
94 |
-
|
95 |
-
# Set `current` to 0 for all previous documents from that source
|
96 |
-
self.cursor.execute("UPDATE documents SET current = 0 WHERE source = ?", (source,))
|
97 |
-
|
98 |
-
# Insert the new documents
|
99 |
-
insert_statement = f"INSERT INTO documents ({', '.join(columns)}) VALUES ({', '.join(['?']*len(columns))})"
|
100 |
-
self.cursor.executemany(insert_statement, data)
|
101 |
-
|
102 |
-
self.conn.commit()
|
103 |
-
|
104 |
-
def get_documents(self, source: str) -> pd.DataFrame:
|
105 |
-
"""Get all current documents from a given source."""
|
106 |
-
# Execute the SQL statement and fetch the results
|
107 |
-
if source is not None:
|
108 |
-
results = self.cursor.execute("SELECT * FROM documents WHERE source = ? AND current = 1", (source,))
|
109 |
-
else:
|
110 |
-
results = self.cursor.execute("SELECT * FROM documents WHERE current = 1")
|
111 |
-
rows = results.fetchall()
|
112 |
-
|
113 |
-
# Convert the results to a pandas DataFrame
|
114 |
-
df = pd.DataFrame(rows, columns=[description[0] for description in results.description])
|
115 |
-
|
116 |
-
# ZLIB decompress the embeddings
|
117 |
-
df["embedding"] = df["embedding"].apply(lambda x: np.frombuffer(zlib.decompress(x), dtype=np.float32).tolist())
|
118 |
-
|
119 |
-
# Drop the `current` column
|
120 |
-
df.drop(columns=["current"], inplace=True)
|
121 |
-
|
122 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buster/documents/sqlite/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .documents import DocumentsDB
|
2 |
+
|
3 |
+
__all__ = [DocumentsDB]
|
buster/documents/sqlite/backward.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Used to import existing DB as a new DB."""
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import itertools
|
5 |
+
import sqlite3
|
6 |
+
from typing import Iterable, NamedTuple
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import buster.documents.sqlite.documents as dest
|
11 |
+
from buster.documents.sqlite import DocumentsDB
|
12 |
+
|
13 |
+
IMPORT_QUERY = (
|
14 |
+
r"""SELECT source, url, title, content FROM documents WHERE current = 1 ORDER BY source, url, title, id"""
|
15 |
+
)
|
16 |
+
CHUNK_QUERY = r"""SELECT source, url, title, content, n_tokens, embedding FROM documents WHERE current = 1 ORDER BY source, url, id"""
|
17 |
+
|
18 |
+
|
19 |
+
class Document(NamedTuple):
|
20 |
+
"""Document from the original db."""
|
21 |
+
|
22 |
+
source: str
|
23 |
+
url: str
|
24 |
+
title: str
|
25 |
+
content: str
|
26 |
+
|
27 |
+
|
28 |
+
class Section(NamedTuple):
|
29 |
+
"""Reassemble section from the original db."""
|
30 |
+
|
31 |
+
url: str
|
32 |
+
title: str
|
33 |
+
content: str
|
34 |
+
|
35 |
+
|
36 |
+
class Chunk(NamedTuple):
|
37 |
+
"""Chunk from the original db."""
|
38 |
+
|
39 |
+
source: str
|
40 |
+
url: str
|
41 |
+
title: str
|
42 |
+
content: str
|
43 |
+
n_tokens: int
|
44 |
+
embedding: np.ndarray
|
45 |
+
|
46 |
+
|
47 |
+
def get_documents(conn: sqlite3.Connection) -> Iterable[tuple[str, Iterable[Section]]]:
|
48 |
+
"""Reassemble documents from the source db's chunks."""
|
49 |
+
documents = (Document(*row) for row in conn.execute(IMPORT_QUERY))
|
50 |
+
by_sources = itertools.groupby(documents, lambda doc: doc.source)
|
51 |
+
for source, documents in by_sources:
|
52 |
+
documents = itertools.groupby(documents, lambda doc: (doc.url, doc.title))
|
53 |
+
sections = (
|
54 |
+
Section(url, title, "".join(chunk.content for chunk in chunks)) for (url, title), chunks in documents
|
55 |
+
)
|
56 |
+
yield source, sections
|
57 |
+
|
58 |
+
|
59 |
+
def get_max_size(conn: sqlite3.Connection) -> int:
|
60 |
+
"""Get the maximum chunk size from the source db."""
|
61 |
+
sizes = (size for size, in conn.execute("select max(length(content)) FROM documents"))
|
62 |
+
(size,) = sizes
|
63 |
+
return size
|
64 |
+
|
65 |
+
|
66 |
+
def get_chunks(conn: sqlite3.Connection) -> Iterable[tuple[str, Iterable[Iterable[dest.Chunk]]]]:
|
67 |
+
"""Retrieve chunks from the source db."""
|
68 |
+
chunks = (Chunk(*row) for row in conn.execute(CHUNK_QUERY))
|
69 |
+
by_sources = itertools.groupby(chunks, lambda chunk: chunk.source)
|
70 |
+
for source, chunks in by_sources:
|
71 |
+
by_section = itertools.groupby(chunks, lambda chunk: (chunk.url, chunk.title))
|
72 |
+
|
73 |
+
sections = (
|
74 |
+
(dest.Chunk(chunk.content, chunk.n_tokens, chunk.embedding) for chunk in chunks) for _, chunks in by_section
|
75 |
+
)
|
76 |
+
|
77 |
+
yield source, sections
|
78 |
+
|
79 |
+
|
80 |
+
def main():
|
81 |
+
"""Import the source db into the destination db."""
|
82 |
+
parser = argparse.ArgumentParser()
|
83 |
+
parser.add_argument("source")
|
84 |
+
parser.add_argument("destination")
|
85 |
+
parser.add_argument("--size", type=int, default=2000)
|
86 |
+
args = parser.parse_args()
|
87 |
+
org = sqlite3.connect(args.source)
|
88 |
+
db = DocumentsDB(args.destination)
|
89 |
+
|
90 |
+
for source, content in get_documents(org):
|
91 |
+
# sid, vid = db.start_version(source)
|
92 |
+
sections = (dest.Section(section.title, section.url, section.content) for section in content)
|
93 |
+
db.add_parse(source, sections)
|
94 |
+
|
95 |
+
size = max(args.size, get_max_size(org))
|
96 |
+
for source, chunks in get_chunks(org):
|
97 |
+
sid, vid = db.get_current_version(source)
|
98 |
+
db.add_chunking(sid, vid, size, chunks)
|
99 |
+
db.conn.commit()
|
100 |
+
|
101 |
+
return
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main()
|
buster/documents/sqlite/documents.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import sqlite3
|
3 |
+
import warnings
|
4 |
+
import zlib
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Iterable, NamedTuple
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
import buster.documents.sqlite.schema as schema
|
12 |
+
from buster.documents.base import DocumentsManager
|
13 |
+
|
14 |
+
|
15 |
+
class Section(NamedTuple):
|
16 |
+
title: str
|
17 |
+
url: str
|
18 |
+
content: str
|
19 |
+
parent: int | None = None
|
20 |
+
type: str = "section"
|
21 |
+
|
22 |
+
|
23 |
+
class Chunk(NamedTuple):
|
24 |
+
content: str
|
25 |
+
n_tokens: int
|
26 |
+
emb: np.ndarray
|
27 |
+
|
28 |
+
|
29 |
+
class DocumentsDB(DocumentsManager):
|
30 |
+
"""Simple SQLite database for storing documents and questions/answers.
|
31 |
+
|
32 |
+
The database is just a file on disk. It can store documents from different sources, and it can store multiple versions of the same document (e.g. if the document is updated).
|
33 |
+
Questions/answers refer to the version of the document that was used at the time.
|
34 |
+
|
35 |
+
Example:
|
36 |
+
>>> db = DocumentsDB("/path/to/the/db.db")
|
37 |
+
>>> db.add("source", df) # df is a DataFrame containing the documents from a given source, obtained e.g. by using buster.docparser.generate_embeddings
|
38 |
+
>>> df = db.get_documents("source")
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, db_path: sqlite3.Connection | str):
|
42 |
+
if isinstance(db_path, (str, Path)):
|
43 |
+
self.db_path = db_path
|
44 |
+
self.conn = sqlite3.connect(db_path, detect_types=sqlite3.PARSE_DECLTYPES)
|
45 |
+
else:
|
46 |
+
self.db_path = None
|
47 |
+
self.conn = db_path
|
48 |
+
schema.initialize_db(self.conn)
|
49 |
+
schema.setup_db(self.conn)
|
50 |
+
|
51 |
+
def __del__(self):
|
52 |
+
if self.db_path is not None:
|
53 |
+
self.conn.close()
|
54 |
+
|
55 |
+
def get_current_version(self, source: str) -> tuple[int, int]:
|
56 |
+
"""Get the current version of a source."""
|
57 |
+
cur = self.conn.execute("SELECT source, version FROM latest_version WHERE name = ?", (source,))
|
58 |
+
row = cur.fetchone()
|
59 |
+
if row is None:
|
60 |
+
raise KeyError(f'"{source}" is not a known source')
|
61 |
+
sid, vid = row
|
62 |
+
return sid, vid
|
63 |
+
|
64 |
+
def get_source(self, source: str) -> int:
|
65 |
+
"""Get the id of a source."""
|
66 |
+
cur = self.conn.execute("SELECT id FROM sources WHERE name = ?", (source,))
|
67 |
+
row = cur.fetchone()
|
68 |
+
if row is not None:
|
69 |
+
(sid,) = row
|
70 |
+
else:
|
71 |
+
cur = self.conn.execute("INSERT INTO sources (name) VALUES (?)", (source,))
|
72 |
+
cur = self.conn.execute("SELECT id FROM sources WHERE name = ?", (source,))
|
73 |
+
row = cur.fetchone()
|
74 |
+
(sid,) = row
|
75 |
+
|
76 |
+
return sid
|
77 |
+
|
78 |
+
def new_version(self, source: str) -> tuple[int, int]:
|
79 |
+
"""Create a new version for a source."""
|
80 |
+
cur = self.conn.execute("SELECT source, version FROM latest_version WHERE name = ?", (source,))
|
81 |
+
row = cur.fetchone()
|
82 |
+
if row is None:
|
83 |
+
sid = self.get_source(source)
|
84 |
+
vid = 0
|
85 |
+
else:
|
86 |
+
sid, vid = row
|
87 |
+
vid = vid + 1
|
88 |
+
self.conn.execute("INSERT INTO versions (source, version) VALUES (?, ?)", (sid, vid))
|
89 |
+
return sid, vid
|
90 |
+
|
91 |
+
def add_parse(self, source: str, sections: Iterable[Section]) -> tuple[int, int]:
|
92 |
+
"""Create a new version of a source filled with parsed sections."""
|
93 |
+
sid, vid = self.new_version(source)
|
94 |
+
values = (
|
95 |
+
(sid, vid, ind, section.title, section.url, section.content, section.parent, section.type)
|
96 |
+
for ind, section in enumerate(sections)
|
97 |
+
)
|
98 |
+
self.conn.executemany(
|
99 |
+
"INSERT INTO sections "
|
100 |
+
"(source, version, section, title, url, content, parent, type) "
|
101 |
+
"VALUES (?, ?, ?, ?, ?, ?, ?, ?)",
|
102 |
+
values,
|
103 |
+
)
|
104 |
+
return sid, vid
|
105 |
+
|
106 |
+
def new_chunking(self, sid: int, vid: int, size: int, overlap: int = 0, strategy: str = "simple") -> int:
|
107 |
+
"""Create a new chunking for a source."""
|
108 |
+
self.conn.execute(
|
109 |
+
"INSERT INTO chunkings (size, overlap, strategy, source, version) VALUES (?, ?, ?, ?, ?)",
|
110 |
+
(size, overlap, strategy, sid, vid),
|
111 |
+
)
|
112 |
+
cur = self.conn.execute(
|
113 |
+
"SELECT chunking FROM chunkings "
|
114 |
+
"WHERE size = ? AND overlap = ? AND strategy = ? AND source = ? AND version = ?",
|
115 |
+
(size, overlap, strategy, sid, vid),
|
116 |
+
)
|
117 |
+
(id,) = (id for id, in cur)
|
118 |
+
return id
|
119 |
+
|
120 |
+
def add_chunking(self, sid: int, vid: int, size: int, sections: Iterable[Iterable[Chunk]]) -> int:
|
121 |
+
"""Create a new chunking for a source, filled with chunks organized by section."""
|
122 |
+
cid = self.new_chunking(sid, vid, size)
|
123 |
+
chunks = ((ind, jnd, chunk) for ind, section in enumerate(sections) for jnd, chunk in enumerate(section))
|
124 |
+
values = ((sid, vid, ind, cid, jnd, chunk.content, chunk.n_tokens, chunk.emb) for ind, jnd, chunk in chunks)
|
125 |
+
self.conn.executemany(
|
126 |
+
"INSERT INTO chunks "
|
127 |
+
"(source, version, section, chunking, sequence, content, n_tokens, embedding) "
|
128 |
+
"VALUES (?, ?, ?, ?, ?, ?, ?, ?)",
|
129 |
+
values,
|
130 |
+
)
|
131 |
+
return cid
|
132 |
+
|
133 |
+
def add(self, source: str, df: pd.DataFrame):
|
134 |
+
"""Write all documents from the dataframe into the db as a new version."""
|
135 |
+
data = sorted(df.itertuples(), key=lambda chunk: (chunk.url, chunk.title))
|
136 |
+
sections = []
|
137 |
+
size = 0
|
138 |
+
for (url, title), chunks in itertools.groupby(data, lambda chunk: (chunk.url, chunk.title)):
|
139 |
+
chunks = [Chunk(chunk.content, chunk.n_tokens, chunk.embedding) for chunk in chunks]
|
140 |
+
size = max(size, max(len(chunk.content) for chunk in chunks))
|
141 |
+
content = "".join(chunk.content for chunk in chunks)
|
142 |
+
sections.append((Section(title, url, content), chunks))
|
143 |
+
|
144 |
+
sid, vid = self.add_parse(source, (section for section, _ in sections))
|
145 |
+
self.add_chunking(sid, vid, size, (chunks for _, chunks in sections))
|
146 |
+
|
147 |
+
def get_documents(self, source: str) -> pd.DataFrame:
|
148 |
+
"""Get all current documents from a given source."""
|
149 |
+
# Execute the SQL statement and fetch the results
|
150 |
+
results = self.conn.execute("SELECT * FROM documents WHERE source = ?", (source,))
|
151 |
+
rows = results.fetchall()
|
152 |
+
|
153 |
+
# Convert the results to a pandas DataFrame
|
154 |
+
df = pd.DataFrame(rows, columns=[description[0] for description in results.description])
|
155 |
+
return df
|
buster/documents/sqlite/schema.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
import zlib
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
SOURCE_TABLE = r"""CREATE TABLE IF NOT EXISTS sources (
|
7 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
8 |
+
name TEXT NOT NULL,
|
9 |
+
note TEXT,
|
10 |
+
UNIQUE(name)
|
11 |
+
)"""
|
12 |
+
|
13 |
+
|
14 |
+
VERSION_TABLE = r"""CREATE TABLE IF NOT EXISTS versions (
|
15 |
+
source INTEGER,
|
16 |
+
version INTEGER,
|
17 |
+
parser TEXT,
|
18 |
+
note TEXT,
|
19 |
+
PRIMARY KEY (version, source, parser)
|
20 |
+
FOREIGN KEY (source) REFERENCES sources (id)
|
21 |
+
)"""
|
22 |
+
|
23 |
+
|
24 |
+
CHUNKING_TABLE = r"""CREATE TABLE IF NOT EXISTS chunkings (
|
25 |
+
chunking INTEGER PRIMARY KEY AUTOINCREMENT,
|
26 |
+
size INTEGER,
|
27 |
+
overlap INTEGER,
|
28 |
+
strategy TEXT,
|
29 |
+
chunker TEXT,
|
30 |
+
source INTEGER,
|
31 |
+
version INTEGER,
|
32 |
+
UNIQUE (size, overlap, strategy, chunker, source, version),
|
33 |
+
FOREIGN KEY (source, version) REFERENCES versions (source, version)
|
34 |
+
)"""
|
35 |
+
|
36 |
+
|
37 |
+
SECTION_TABLE = r"""CREATE TABLE IF NOT EXISTS sections (
|
38 |
+
source INTEGER,
|
39 |
+
version INTEGER,
|
40 |
+
section INTEGER,
|
41 |
+
title TEXT NOT NULL,
|
42 |
+
url TEXT NOT NULL,
|
43 |
+
content TEXT NOT NULL,
|
44 |
+
parent INTEGER,
|
45 |
+
type TEXT,
|
46 |
+
PRIMARY KEY (version, source, section),
|
47 |
+
FOREIGN KEY (source) REFERENCES versions (source),
|
48 |
+
FOREIGN KEY (version) REFERENCES versions (version)
|
49 |
+
)"""
|
50 |
+
|
51 |
+
|
52 |
+
CHUNK_TABLE = r"""CREATE TABLE IF NOT EXISTS chunks (
|
53 |
+
source INTEGER,
|
54 |
+
version INTEGER,
|
55 |
+
section INTEGER,
|
56 |
+
chunking INTEGER,
|
57 |
+
sequence INTEGER,
|
58 |
+
content TEXT NOT NULL,
|
59 |
+
n_tokens INTEGER,
|
60 |
+
embedding VECTOR,
|
61 |
+
PRIMARY KEY (source, version, section, chunking, sequence),
|
62 |
+
FOREIGN KEY (source, version, section) REFERENCES sections (source, version, section),
|
63 |
+
FOREIGN KEY (source, version, chunking) REFERENCES chunkings (source, version, chunking)
|
64 |
+
)"""
|
65 |
+
|
66 |
+
|
67 |
+
VERSION_VIEW = r"""CREATE VIEW IF NOT EXISTS latest_version (
|
68 |
+
name, source, version) AS
|
69 |
+
SELECT sources.name, versions.source, max(versions.version)
|
70 |
+
FROM sources INNER JOIN versions on sources.id = versions.source
|
71 |
+
GROUP BY sources.id
|
72 |
+
"""
|
73 |
+
|
74 |
+
CHUNKING_VIEW = r"""CREATE VIEW IF NOT EXISTS latest_chunking (
|
75 |
+
name, source, version, chunking) AS
|
76 |
+
SELECT name, source, version, max(chunking) FROM
|
77 |
+
chunkings INNER JOIN latest_version USING (source, version)
|
78 |
+
GROUP by source, version
|
79 |
+
"""
|
80 |
+
|
81 |
+
DOCUMENT_VIEW = r"""CREATE VIEW IF NOT EXISTS documents (
|
82 |
+
source, title, url, content, n_tokens, embedding)
|
83 |
+
AS SELECT latest_chunking.name, sections.title, sections.url,
|
84 |
+
chunks.content, chunks.n_tokens, chunks.embedding
|
85 |
+
FROM chunks INNER JOIN sections USING (source, version, section)
|
86 |
+
INNER JOIN latest_chunking USING (source, version, chunking)
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
INIT_STATEMENTS = [
|
91 |
+
SOURCE_TABLE,
|
92 |
+
VERSION_TABLE,
|
93 |
+
CHUNKING_TABLE,
|
94 |
+
SECTION_TABLE,
|
95 |
+
CHUNK_TABLE,
|
96 |
+
VERSION_VIEW,
|
97 |
+
CHUNKING_VIEW,
|
98 |
+
DOCUMENT_VIEW,
|
99 |
+
]
|
100 |
+
|
101 |
+
|
102 |
+
def initialize_db(connection: sqlite3.Connection):
|
103 |
+
for statement in INIT_STATEMENTS:
|
104 |
+
try:
|
105 |
+
connection.execute(statement)
|
106 |
+
except sqlite3.Error as error:
|
107 |
+
connection.rollback()
|
108 |
+
raise
|
109 |
+
connection.commit()
|
110 |
+
return connection
|
111 |
+
|
112 |
+
|
113 |
+
def adapt_vector(vector: np.ndarray) -> bytes:
|
114 |
+
return sqlite3.Binary(zlib.compress(vector.astype(np.float32).tobytes()))
|
115 |
+
|
116 |
+
|
117 |
+
def convert_vector(buffer: bytes) -> np.ndarray:
|
118 |
+
return np.frombuffer(zlib.decompress(buffer), dtype=np.float32)
|
119 |
+
|
120 |
+
|
121 |
+
def cosine_similarity(a: bytes, b: bytes) -> float:
|
122 |
+
a = convert_vector(a)
|
123 |
+
b = convert_vector(b)
|
124 |
+
a = a / np.linalg.norm(a)
|
125 |
+
b = b / np.linalg.norm(b)
|
126 |
+
dopt = 0.5 * np.dot(a, b) + 0.5
|
127 |
+
return float(dopt)
|
128 |
+
|
129 |
+
|
130 |
+
def setup_db(connection: sqlite3.Connection):
|
131 |
+
sqlite3.register_adapter(np.ndarray, adapt_vector)
|
132 |
+
sqlite3.register_converter("vector", convert_vector)
|
133 |
+
connection.create_function("sim", 2, cosine_similarity, deterministic=True)
|