jev-aleks commited on
Commit
046dd24
·
1 Parent(s): d1494df

Formatting

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -191,17 +191,20 @@ def demo_run(image: str,
191
 
192
 
193
  markdown_description = """
 
 
194
  [Paper](https://arxiv.org/abs/xxxx.xxxxx) | [Code](https://github.com/tum-vision/scenedino) | [Project Page](https://visinf.github.io/scenedino/)
195
- Upload a single image to infer 3D geometry and semantics with **SceneDINO**. You can find some example images below.
196
 
197
- - **Feature PCA**
198
- We visualize our high-dimensional feature field using PCA and visualizing three of the components in RGB. Interactively adjust which are visualized.
199
- - **SSC** (Semantic Scene Completion)
200
- Our features are used downstream for semantic predictions. Choose between the fully unsupervised approach or the linear probing approach.
201
 
202
  <span style="color:orange">⚠️ NOTE: We assume the intrinsic camera matrix of KITTI-360, images are cropped and rescaled to 192x640. Further note our demo's voxel limit of 5M. </span>
203
  """
204
 
 
 
 
 
 
205
  demo = gr.Interface(
206
  demo_run,
207
  inputs=[
@@ -222,7 +225,7 @@ demo = gr.Interface(
222
  camera_position=[-90, 80, None],
223
  display_mode="solid"),
224
  ],
225
- title="SceneDINO Demo",
226
  examples="demo_utils/examples",
227
  description=markdown_description,
228
  )
 
191
 
192
 
193
  markdown_description = """
194
+ # SceneDINO Demo
195
+
196
  [Paper](https://arxiv.org/abs/xxxx.xxxxx) | [Code](https://github.com/tum-vision/scenedino) | [Project Page](https://visinf.github.io/scenedino/)
 
197
 
198
+ Upload a single image to infer 3D geometry and semantics with **SceneDINO**. You can find some example images below.
 
 
 
199
 
200
  <span style="color:orange">⚠️ NOTE: We assume the intrinsic camera matrix of KITTI-360, images are cropped and rescaled to 192x640. Further note our demo's voxel limit of 5M. </span>
201
  """
202
 
203
+ # - **Feature PCA**
204
+ # We visualize our high-dimensional feature field using PCA and visualizing three of the components in RGB. Interactively adjust which are visualized.
205
+ # - **SSC** (Semantic Scene Completion)
206
+ # Our features are used downstream for semantic predictions. Choose between the fully unsupervised approach or the linear probing approach.
207
+
208
  demo = gr.Interface(
209
  demo_run,
210
  inputs=[
 
225
  camera_position=[-90, 80, None],
226
  display_mode="solid"),
227
  ],
228
+ title="",
229
  examples="demo_utils/examples",
230
  description=markdown_description,
231
  )