Spaces:
Running
on
Zero
Running
on
Zero
scenedino init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- .gitignore +213 -0
- LICENSE.txt +201 -0
- README.md +2 -1
- app.py +213 -0
- configs/dataset/bdd_seg.yaml +2 -0
- configs/dataset/cityscapes_seg.yaml +2 -0
- configs/dataset/kitti_360_sscbench.yaml +15 -0
- configs/dataset/realestate10k.yaml +3 -0
- configs/downstream/semantic.yaml +13 -0
- configs/evaluate_semantic_bdd.yaml +50 -0
- configs/evaluate_semantic_cityscapes.yaml +50 -0
- configs/evaluate_semantic_kitti_360.yaml +50 -0
- configs/model/dino_downsampler.yaml +64 -0
- configs/model/dino_upsampler.yaml +64 -0
- configs/model/dinov2_downsampler.yaml +64 -0
- configs/renderer/pixelnerf.yaml +9 -0
- configs/train_scenedino_kitti_360.yaml +43 -0
- configs/train_scenedino_re10k.yaml +49 -0
- configs/train_semantic_kitti_360.yaml +52 -0
- configs/training/loss/scenedino.yaml +15 -0
- configs/training/loss/semantic.yaml +10 -0
- configs/training/optimizer/scenedino.yaml +7 -0
- configs/training/optimizer/semantic.yaml +7 -0
- configs/training/scenedino.yaml +21 -0
- configs/training/scheduler/scenedino.yaml +3 -0
- configs/training/semantic.yaml +16 -0
- configs/validation/scenedino.yaml +78 -0
- configs/validation/semantic.yaml +80 -0
- datasets/__init__.py +0 -0
- datasets/bdd/bdd_dataset.py +164 -0
- datasets/cityscapes/cityscapes_dataset.py +82 -0
- datasets/data_util.py +307 -0
- datasets/kitti_360/__init__.py +0 -0
- datasets/kitti_360/annotation.py +538 -0
- datasets/kitti_360/compute_kitti_360_bbox_split.py +110 -0
- datasets/kitti_360/kitti_360_dataset.py +1263 -0
- datasets/kitti_360/labels.py +200 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0000_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0002_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0003_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0004_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0005_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0006_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0007_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0009_sync/poses.txt +0 -0
- datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0010_sync/poses.txt +0 -0
- datasets/kitti_360/preprocess_kitti_360.py +81 -0
- datasets/kitti_360/splits/seg/test_files.txt +446 -0
- datasets/kitti_360/splits/seg/train_files.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[codz]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py.cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
#poetry.toml
|
110 |
+
|
111 |
+
# pdm
|
112 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
113 |
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
114 |
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
115 |
+
#pdm.lock
|
116 |
+
#pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# pixi
|
121 |
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
122 |
+
#pixi.lock
|
123 |
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
124 |
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
125 |
+
.pixi
|
126 |
+
|
127 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
128 |
+
__pypackages__/
|
129 |
+
|
130 |
+
# Celery stuff
|
131 |
+
celerybeat-schedule
|
132 |
+
celerybeat.pid
|
133 |
+
|
134 |
+
# SageMath parsed files
|
135 |
+
*.sage.py
|
136 |
+
|
137 |
+
# Environments
|
138 |
+
.env
|
139 |
+
.envrc
|
140 |
+
.venv
|
141 |
+
env/
|
142 |
+
venv/
|
143 |
+
ENV/
|
144 |
+
env.bak/
|
145 |
+
venv.bak/
|
146 |
+
|
147 |
+
# Spyder project settings
|
148 |
+
.spyderproject
|
149 |
+
.spyproject
|
150 |
+
|
151 |
+
# Rope project settings
|
152 |
+
.ropeproject
|
153 |
+
|
154 |
+
# mkdocs documentation
|
155 |
+
/site
|
156 |
+
|
157 |
+
# mypy
|
158 |
+
.mypy_cache/
|
159 |
+
.dmypy.json
|
160 |
+
dmypy.json
|
161 |
+
|
162 |
+
# Pyre type checker
|
163 |
+
.pyre/
|
164 |
+
|
165 |
+
# pytype static type analyzer
|
166 |
+
.pytype/
|
167 |
+
|
168 |
+
# Cython debug symbols
|
169 |
+
cython_debug/
|
170 |
+
|
171 |
+
# PyCharm
|
172 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
173 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
174 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
175 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
176 |
+
#.idea/
|
177 |
+
|
178 |
+
# Abstra
|
179 |
+
# Abstra is an AI-powered process automation framework.
|
180 |
+
# Ignore directories containing user credentials, local state, and settings.
|
181 |
+
# Learn more at https://abstra.io/docs
|
182 |
+
.abstra/
|
183 |
+
|
184 |
+
# Visual Studio Code
|
185 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
186 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
187 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
188 |
+
# you could uncomment the following to ignore the entire vscode folder
|
189 |
+
# .vscode/
|
190 |
+
|
191 |
+
# Ruff stuff:
|
192 |
+
.ruff_cache/
|
193 |
+
|
194 |
+
# PyPI configuration file
|
195 |
+
.pypirc
|
196 |
+
|
197 |
+
# Cursor
|
198 |
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
199 |
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
200 |
+
# refer to https://docs.cursor.com/context/ignore-files
|
201 |
+
.cursorignore
|
202 |
+
.cursorindexingignore
|
203 |
+
|
204 |
+
# Marimo
|
205 |
+
marimo/_static/
|
206 |
+
marimo/_lsp/
|
207 |
+
__marimo__/
|
208 |
+
|
209 |
+
# Gradio
|
210 |
+
.gradio
|
211 |
+
|
212 |
+
# outputs and checkpoints
|
213 |
+
out/
|
LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
---
|
2 |
title: SceneDINO
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
|
|
7 |
sdk_version: 5.35.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
1 |
---
|
2 |
title: SceneDINO
|
3 |
+
emoji: 🦕
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
python_version: 3.10
|
8 |
sdk_version: 5.35.0
|
9 |
app_file: app.py
|
10 |
pinned: false
|
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from demo_utils.utils import (load_modules,
|
2 |
+
load_sample_from_path,
|
3 |
+
load_sample_from_dataset,
|
4 |
+
get_fov_mask,
|
5 |
+
inference_3d,
|
6 |
+
inference_rendered_2d)
|
7 |
+
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
import yaml
|
12 |
+
|
13 |
+
sys.path.append("./sscbench")
|
14 |
+
from sscbench.gen_voxelgrid_npy import save_as_voxel_ply, classes_to_colors
|
15 |
+
from download_checkpoint_hf import download_scenedino_checkpoint
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import gradio as gr
|
21 |
+
import open3d as o3d
|
22 |
+
import spaces
|
23 |
+
|
24 |
+
|
25 |
+
# Load checkpoints from Hugging Face
|
26 |
+
download_scenedino_checkpoint("ssc-kitti-360-dino")
|
27 |
+
download_scenedino_checkpoint("ssc-kitti-360-dinov2")
|
28 |
+
|
29 |
+
# Load model, ray sampler, datasets
|
30 |
+
ckpt_path = "out/scenedino-pretrained/seg-best-dino/"
|
31 |
+
ckpt_name = "checkpoint.pt"
|
32 |
+
net_v1, renderer_v1, ray_sampler_v1, test_dataset = load_modules(ckpt_path, ckpt_name)
|
33 |
+
renderer_v1.eval()
|
34 |
+
|
35 |
+
ckpt_path = "out/scenedino-pretrained/seg-best-dinov2/"
|
36 |
+
ckpt_name = "checkpoint.pt"
|
37 |
+
net_v2, renderer_v2, ray_sampler_v2, _ = load_modules(ckpt_path, ckpt_name)
|
38 |
+
renderer_v2.eval()
|
39 |
+
|
40 |
+
|
41 |
+
def convert_voxels(arr, map_dict):
|
42 |
+
f = np.vectorize(map_dict.__getitem__)
|
43 |
+
return f(arr)
|
44 |
+
|
45 |
+
with open("sscbench/label_maps.yaml", "r") as f:
|
46 |
+
label_maps = yaml.safe_load(f)
|
47 |
+
|
48 |
+
|
49 |
+
@spaces.GPU(duration=60)
|
50 |
+
def demo_run(image: str,
|
51 |
+
backbone: str,
|
52 |
+
mode: str,
|
53 |
+
sigma_threshold: float,
|
54 |
+
resolution: float,
|
55 |
+
x_range: int,
|
56 |
+
y_range: int,
|
57 |
+
z_range: int):
|
58 |
+
|
59 |
+
if backbone == "DINO (ViT-B)":
|
60 |
+
net, renderer, ray_sampler = net_v1, renderer_v1, ray_sampler_v1
|
61 |
+
elif backbone == "DINOv2 (ViT-B)":
|
62 |
+
net, renderer, ray_sampler = net_v2, renderer_v2, ray_sampler_v2
|
63 |
+
|
64 |
+
prediction_mode = "stego_kmeans"
|
65 |
+
if mode == "Feature PCA 1-3":
|
66 |
+
segmentation = False
|
67 |
+
rgb_from_pca_dim = 0
|
68 |
+
elif mode == "Feature PCA 4-6":
|
69 |
+
segmentation = False
|
70 |
+
rgb_from_pca_dim = 3
|
71 |
+
elif mode == "Feature PCA 7-9":
|
72 |
+
segmentation = False
|
73 |
+
rgb_from_pca_dim = 6
|
74 |
+
elif mode == "SSC (unsup.)":
|
75 |
+
segmentation = True
|
76 |
+
elif mode == "SSC (linear)":
|
77 |
+
segmentation = True
|
78 |
+
prediction_mode = "direct_linear"
|
79 |
+
|
80 |
+
# Necessary when reading from examples? cast from str
|
81 |
+
sigma_threshold, resolution = float(sigma_threshold), float(resolution)
|
82 |
+
x_range, y_range, z_range = int(x_range), int(y_range), int(z_range)
|
83 |
+
|
84 |
+
# Too many voxels
|
85 |
+
max_voxel_count = 5000000
|
86 |
+
voxel_count = (x_range//resolution + 1) * (y_range//resolution + 1) * (z_range//resolution + 1)
|
87 |
+
if voxel_count > max_voxel_count:
|
88 |
+
raise gr.Error(f"Too many voxels ({int(voxel_count) / 1_000_000:.1f}M > {max_voxel_count / 1_000_000:.1f}M).\n" +
|
89 |
+
"Reduce voxel resolution or range.", duration=5)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
images, poses, projs = load_sample_from_path(image, intrinsic=None)
|
93 |
+
|
94 |
+
net.encode(images, projs, poses, ids_encoder=[0])
|
95 |
+
net.set_scale(0)
|
96 |
+
|
97 |
+
# 2D Features output
|
98 |
+
dino_full_2d, depth_2d, seg_2d = inference_rendered_2d(net, poses, projs, ray_sampler, renderer, prediction_mode)
|
99 |
+
net.encoder.fit_visualization(dino_full_2d.flatten(0, -2))
|
100 |
+
|
101 |
+
if segmentation:
|
102 |
+
output_2d = convert_voxels(seg_2d.detach().cpu(), label_maps["cityscapes_to_label"])
|
103 |
+
output_2d = classes_to_colors[output_2d].cpu().detach().numpy()
|
104 |
+
else:
|
105 |
+
output_2d = net.encoder.transform_visualization(dino_full_2d, from_dim=rgb_from_pca_dim)
|
106 |
+
output_2d -= output_2d.min()
|
107 |
+
output_2d /= output_2d.max()
|
108 |
+
output_2d = output_2d.cpu().detach().numpy()
|
109 |
+
|
110 |
+
# Chunking
|
111 |
+
max_chunk_size = 100000
|
112 |
+
z_layers_per_chunk = max_chunk_size // ((x_range//resolution + 1) * (y_range//resolution + 1))
|
113 |
+
|
114 |
+
# 3D Features output
|
115 |
+
x_range = (-x_range/2, x_range)
|
116 |
+
y_range = (-y_range/2, y_range)
|
117 |
+
z_range = (0, z_range)
|
118 |
+
|
119 |
+
is_occupied, output_3d, fov_mask = [], [], []
|
120 |
+
current_z = 0
|
121 |
+
|
122 |
+
while current_z <= z_range[1]:
|
123 |
+
z_range_chunk = (current_z, min(current_z + z_layers_per_chunk*resolution, z_range[1]))
|
124 |
+
current_z += (z_layers_per_chunk+1) * resolution
|
125 |
+
|
126 |
+
xyz_chunk, dino_full_3d_chunk, sigma_3d_chunk, seg_3d_chunk = inference_3d(net, x_range, y_range, z_range_chunk, resolution, prediction_mode)
|
127 |
+
fov_mask_chunk = get_fov_mask(projs[0, 0], xyz_chunk)
|
128 |
+
|
129 |
+
is_occupied_chunk = sigma_3d_chunk > sigma_threshold
|
130 |
+
|
131 |
+
if segmentation:
|
132 |
+
output_3d_chunk = seg_3d_chunk
|
133 |
+
else:
|
134 |
+
output_3d_chunk = net.encoder.transform_visualization(dino_full_3d_chunk, from_dim=rgb_from_pca_dim)
|
135 |
+
output_3d_chunk -= output_3d_chunk.min()
|
136 |
+
output_3d_chunk /= output_3d_chunk.max()
|
137 |
+
|
138 |
+
output_3d_chunk = torch.clamp(output_3d_chunk*1.2 - 0.1, 0.0, 1.0)
|
139 |
+
output_3d_chunk = (255*output_3d_chunk).int()
|
140 |
+
|
141 |
+
fov_mask_chunk = fov_mask_chunk.reshape(is_occupied_chunk.shape)
|
142 |
+
|
143 |
+
is_occupied.append(is_occupied_chunk)
|
144 |
+
output_3d.append(output_3d_chunk)
|
145 |
+
fov_mask.append(fov_mask_chunk)
|
146 |
+
|
147 |
+
is_occupied = torch.cat(is_occupied, dim=2)
|
148 |
+
output_3d = torch.cat(output_3d, dim=2)
|
149 |
+
fov_mask = torch.cat(fov_mask, dim=2)
|
150 |
+
|
151 |
+
temp_dir = tempfile.gettempdir()
|
152 |
+
ply_path = os.path.join(temp_dir, "output.ply")
|
153 |
+
|
154 |
+
if segmentation:
|
155 |
+
# mapped to "unlabeled"
|
156 |
+
is_occupied[output_3d == 10] = 0
|
157 |
+
is_occupied[output_3d == 12] = 0
|
158 |
+
|
159 |
+
save_as_voxel_ply(ply_path,
|
160 |
+
is_occupied.detach().cpu(),
|
161 |
+
voxel_size=resolution,
|
162 |
+
size=is_occupied.size(),
|
163 |
+
classes=torch.Tensor(
|
164 |
+
convert_voxels(
|
165 |
+
output_3d.detach().cpu(),
|
166 |
+
label_maps["cityscapes_to_label"])),
|
167 |
+
fov_mask=fov_mask)
|
168 |
+
else:
|
169 |
+
save_as_voxel_ply(ply_path,
|
170 |
+
is_occupied.detach().cpu(),
|
171 |
+
voxel_size=resolution,
|
172 |
+
size=is_occupied.size(),
|
173 |
+
colors=output_3d.detach().cpu(),
|
174 |
+
fov_mask=fov_mask)
|
175 |
+
|
176 |
+
mesh = o3d.io.read_triangle_mesh(ply_path)
|
177 |
+
glb_path = os.path.join(temp_dir, "output.glb")
|
178 |
+
o3d.io.write_triangle_mesh(glb_path, mesh, write_ascii=True)
|
179 |
+
|
180 |
+
del dino_full_2d, depth_2d, seg_2d
|
181 |
+
del dino_full_3d_chunk, sigma_3d_chunk, seg_3d_chunk, is_occupied_chunk
|
182 |
+
del is_occupied, output_3d, fov_mask
|
183 |
+
|
184 |
+
torch.cuda.empty_cache()
|
185 |
+
|
186 |
+
return output_2d, glb_path
|
187 |
+
|
188 |
+
|
189 |
+
demo = gr.Interface(
|
190 |
+
demo_run,
|
191 |
+
inputs=[
|
192 |
+
gr.Image(label="Input image", type="filepath"),
|
193 |
+
gr.Radio(label="Backbone", choices=["DINO (ViT-B)", "DINOv2 (ViT-B)"]),
|
194 |
+
gr.Radio(label="Mode", choices=["Feature PCA 1-3", "Feature PCA 4-6", "Feature PCA 7-9", "SSC (unsup.)", "SSC (linear)"]),
|
195 |
+
gr.Slider(label="Density threshold", minimum=0, maximum=1, step=0.05, value=0.2),
|
196 |
+
gr.Slider(label="Resolution [m]", minimum=0.05, maximum=0.5, step=0.1, value=0.2),
|
197 |
+
gr.Slider(label="X Range [m]", minimum=1, maximum=50, step=1, value=10),
|
198 |
+
gr.Slider(label="Y Range [m]", minimum=1, maximum=50, step=1, value=10),
|
199 |
+
gr.Slider(label="Z Range [m]", minimum=1, maximum=100, step=1, value=20),
|
200 |
+
],
|
201 |
+
outputs=[
|
202 |
+
gr.Image(label="Rendered 2D Visualization"),
|
203 |
+
gr.Model3D(label="Voxel Surface 3D Visualization",
|
204 |
+
zoom_speed=0.5, pan_speed=0.5,
|
205 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
206 |
+
camera_position=[-90, 80, None],
|
207 |
+
display_mode="solid"),
|
208 |
+
],
|
209 |
+
title="SceneDINO Demo",
|
210 |
+
examples="demo_utils/examples",
|
211 |
+
)
|
212 |
+
|
213 |
+
demo.launch()
|
configs/dataset/bdd_seg.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
type: "BDD_seg"
|
2 |
+
data_path: "<PATH-BDD>"
|
configs/dataset/cityscapes_seg.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
type: "Cityscapes_seg"
|
2 |
+
data_path: "<PATH-CITYSCAPES>"
|
configs/dataset/kitti_360_sscbench.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
type: "old_KITTI_360"
|
2 |
+
data_path: "<PATH-KITTI-360>"
|
3 |
+
pose_path: "<PATH-KITTI-360-DATA-POSES>"
|
4 |
+
split_path: "datasets/kitti_360/splits/sscbench"
|
5 |
+
image_size: [ 192, 640 ]
|
6 |
+
data_stereo: true
|
7 |
+
data_fisheye: true
|
8 |
+
data_fc: 2
|
9 |
+
# dilation: 10
|
10 |
+
# color_aug: true
|
11 |
+
fisheye_offset: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
|
12 |
+
stereo_offset: [0]
|
13 |
+
is_preprocessed: true
|
14 |
+
fisheye_rotation: -15
|
15 |
+
data_segmentation: true
|
configs/dataset/realestate10k.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
type: "RealEstate10K"
|
2 |
+
data_path: "<PATH-REALESTATE-PKL>.pickle"
|
3 |
+
image_size: [288, 512]
|
configs/downstream/semantic.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
type: "segmentation"
|
2 |
+
|
3 |
+
n_classes: 19
|
4 |
+
gt_classes: 19
|
5 |
+
input_dim: 384
|
6 |
+
code_dim: 64
|
7 |
+
|
8 |
+
knn_neighbors: 4
|
9 |
+
buffer_size: 256
|
10 |
+
patch_sample_size: 576
|
11 |
+
|
12 |
+
mode: "3d"
|
13 |
+
apply_crf: False
|
configs/evaluate_semantic_bdd.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: bdd_seg
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: semantic
|
6 |
+
- validation: semantic
|
7 |
+
- downstream: semantic
|
8 |
+
- _self_
|
9 |
+
|
10 |
+
training_type: "downstream_training"
|
11 |
+
mode: "nvs"
|
12 |
+
seed: 0
|
13 |
+
backend: null
|
14 |
+
nproc_per_node: null
|
15 |
+
with_amp: false
|
16 |
+
name: "training"
|
17 |
+
batch_size: 1
|
18 |
+
gradient_accum_factor: 1
|
19 |
+
num_workers: 6
|
20 |
+
|
21 |
+
renderer:
|
22 |
+
n_coarse : 32
|
23 |
+
n_fine : 0
|
24 |
+
n_fine_depth : 0
|
25 |
+
depth_std : 1.0
|
26 |
+
sched : []
|
27 |
+
white_bkgd : false
|
28 |
+
lindisp: true
|
29 |
+
hard_alpha_cap: true
|
30 |
+
render_mode: volumetric
|
31 |
+
eval_batch_size: 65536
|
32 |
+
normalize_dino: true
|
33 |
+
|
34 |
+
# eval_visualize: [0, 1, 2, 3]
|
35 |
+
|
36 |
+
output:
|
37 |
+
path: "out/evaluation-paper"
|
38 |
+
unique_id: evaluation-bdd
|
39 |
+
|
40 |
+
checkpoint: "<PATH-FEATURE-CHECKPOINT>.pt"
|
41 |
+
|
42 |
+
evaluations:
|
43 |
+
- type: seg
|
44 |
+
agg_type: unsup_seg
|
45 |
+
args:
|
46 |
+
n_classes: 19
|
47 |
+
gt_classes: 19
|
48 |
+
|
49 |
+
downstream:
|
50 |
+
input_dim: 768
|
configs/evaluate_semantic_cityscapes.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: cityscapes_seg
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: semantic
|
6 |
+
- validation: semantic
|
7 |
+
- downstream: semantic
|
8 |
+
- _self_
|
9 |
+
|
10 |
+
training_type: "downstream_training"
|
11 |
+
mode: "nvs"
|
12 |
+
seed: 0
|
13 |
+
backend: null
|
14 |
+
nproc_per_node: null
|
15 |
+
with_amp: false
|
16 |
+
name: "training"
|
17 |
+
batch_size: 1
|
18 |
+
gradient_accum_factor: 1
|
19 |
+
num_workers: 6
|
20 |
+
|
21 |
+
renderer:
|
22 |
+
n_coarse : 32
|
23 |
+
n_fine : 0
|
24 |
+
n_fine_depth : 0
|
25 |
+
depth_std : 1.0
|
26 |
+
sched : []
|
27 |
+
white_bkgd : false
|
28 |
+
lindisp: true
|
29 |
+
hard_alpha_cap: true
|
30 |
+
render_mode: volumetric
|
31 |
+
eval_batch_size: 65536
|
32 |
+
normalize_dino: true
|
33 |
+
|
34 |
+
# eval_visualize: [0, 1, 2, 3]
|
35 |
+
|
36 |
+
output:
|
37 |
+
path: "out/evaluation-paper"
|
38 |
+
unique_id: evaluation-cityscapes
|
39 |
+
|
40 |
+
checkpoint: "<PATH-FEATURE-CHECKPOINT>.pt"
|
41 |
+
|
42 |
+
evaluations:
|
43 |
+
- type: seg
|
44 |
+
agg_type: unsup_seg
|
45 |
+
args:
|
46 |
+
n_classes: 19
|
47 |
+
gt_classes: 19
|
48 |
+
|
49 |
+
downstream:
|
50 |
+
input_dim: 768
|
configs/evaluate_semantic_kitti_360.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: kitti_360_sscbench
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: semantic
|
6 |
+
- validation: semantic
|
7 |
+
- downstream: semantic
|
8 |
+
- _self_
|
9 |
+
|
10 |
+
training_type: "downstream_training"
|
11 |
+
mode: "nvs"
|
12 |
+
seed: 0
|
13 |
+
backend: null
|
14 |
+
nproc_per_node: null
|
15 |
+
with_amp: false
|
16 |
+
name: "training"
|
17 |
+
batch_size: 1
|
18 |
+
gradient_accum_factor: 1
|
19 |
+
num_workers: 6
|
20 |
+
|
21 |
+
renderer:
|
22 |
+
n_coarse : 32
|
23 |
+
n_fine : 0
|
24 |
+
n_fine_depth : 0
|
25 |
+
depth_std : 1.0
|
26 |
+
sched : []
|
27 |
+
white_bkgd : false
|
28 |
+
lindisp: true
|
29 |
+
hard_alpha_cap: true
|
30 |
+
render_mode: volumetric
|
31 |
+
eval_batch_size: 65536
|
32 |
+
normalize_dino: true
|
33 |
+
|
34 |
+
# eval_visualize: [0, 1, 2, 3]
|
35 |
+
|
36 |
+
output:
|
37 |
+
path: "out/evaluation-paper"
|
38 |
+
unique_id: evaluation-kitti-360-sscbench
|
39 |
+
|
40 |
+
checkpoint: "<PATH-FEATURE-CHECKPOINT>.pt"
|
41 |
+
|
42 |
+
evaluations:
|
43 |
+
- type: seg
|
44 |
+
agg_type: unsup_seg
|
45 |
+
args:
|
46 |
+
n_classes: 19
|
47 |
+
gt_classes: 19
|
48 |
+
|
49 |
+
downstream:
|
50 |
+
input_dim: 768
|
configs/model/dino_downsampler.yaml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
arch: "BTSNet"
|
2 |
+
use_code: true
|
3 |
+
prediction_mode: default
|
4 |
+
|
5 |
+
predict_dino: true
|
6 |
+
dino_dims: 64 # == encoder.pca_dino_out
|
7 |
+
|
8 |
+
compensate_artifacts: true
|
9 |
+
flip_augmentation: true
|
10 |
+
|
11 |
+
encoder:
|
12 |
+
type: "dinov2"
|
13 |
+
mode: "downsample-prediction" # upsample-gt, downsample-pred
|
14 |
+
decoder_arch: "dpt"
|
15 |
+
# upsampler_arch: "multiscale-crop" # multiscale-crop, nearest
|
16 |
+
downsampler_arch: "featup" # featup, bilinear
|
17 |
+
encoder_arch: "vit-b" # vit-s, vit-b
|
18 |
+
version: "v1" # v1, v2, reg, fit3d
|
19 |
+
separate_gt_version: "v1" # v1, v2, reg, fit3d, None
|
20 |
+
encoder_freeze: false
|
21 |
+
flip_avg_gt: false
|
22 |
+
dim_reduction_arch: "mlp"
|
23 |
+
num_ch_enc: [64, 64, 128, 256]
|
24 |
+
intermediate_features: [3, 6, 9]
|
25 |
+
decoder_out_dim: 256
|
26 |
+
dino_pca_dim: 64 # == dino_dims
|
27 |
+
image_size: [192, 640]
|
28 |
+
key_features: false
|
29 |
+
|
30 |
+
code:
|
31 |
+
num_freqs: 6
|
32 |
+
freq_factor: 1.5
|
33 |
+
include_input: true
|
34 |
+
|
35 |
+
decoder_heads:
|
36 |
+
- type: "resnet"
|
37 |
+
name: "normal_head"
|
38 |
+
freeze: false
|
39 |
+
args:
|
40 |
+
n_blocks: 0
|
41 |
+
d_hidden: 128
|
42 |
+
final_prediction_head: "normal_head"
|
43 |
+
|
44 |
+
encoding_strategy:
|
45 |
+
name: "default"
|
46 |
+
args: {}
|
47 |
+
eval_encoding_strategy:
|
48 |
+
name: "default"
|
49 |
+
args: null
|
50 |
+
loss_renderer_strategy:
|
51 |
+
name: "kitti_360"
|
52 |
+
args: null
|
53 |
+
eval_loss_renderer_strategy:
|
54 |
+
name: "single_renderer"
|
55 |
+
args:
|
56 |
+
shuffle_frames: false
|
57 |
+
all_frames: true
|
58 |
+
|
59 |
+
inv_z: true
|
60 |
+
|
61 |
+
learn_empty: false
|
62 |
+
code_mode: z
|
63 |
+
|
64 |
+
n_frames_render: 4 # number of frames to render among v==8
|
configs/model/dino_upsampler.yaml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
arch: "BTSNet"
|
2 |
+
use_code: true
|
3 |
+
prediction_mode: default
|
4 |
+
|
5 |
+
predict_dino: true
|
6 |
+
dino_dims: 64 # == encoder.pca_dino_out
|
7 |
+
|
8 |
+
compensate_artifacts: false
|
9 |
+
flip_augmentation: true
|
10 |
+
|
11 |
+
encoder:
|
12 |
+
type: "dinov2"
|
13 |
+
mode: "upsample-gt" # upsample-gt, downsample-pred
|
14 |
+
decoder_arch: "dpt"
|
15 |
+
upsampler_arch: "multiscale-crop" # multiscale-crop, nearest
|
16 |
+
# downsampler_arch: "featup" # featup, bilinear
|
17 |
+
encoder_arch: "vit-b" # vit-s, vit-b
|
18 |
+
version: "v1" # v1, v2, reg, fit3d
|
19 |
+
separate_gt_version: "v1" # v1, v2, reg, fit3d, None
|
20 |
+
encoder_freeze: false
|
21 |
+
flip_avg_gt: false
|
22 |
+
dim_reduction_arch: "mlp"
|
23 |
+
num_ch_enc: [64, 64, 128, 256]
|
24 |
+
intermediate_features: [3, 6, 9]
|
25 |
+
decoder_out_dim: 256
|
26 |
+
dino_pca_dim: 64 # == dino_dims
|
27 |
+
image_size: [192, 640]
|
28 |
+
key_features: false
|
29 |
+
|
30 |
+
code:
|
31 |
+
num_freqs: 6
|
32 |
+
freq_factor: 1.5
|
33 |
+
include_input: true
|
34 |
+
|
35 |
+
decoder_heads:
|
36 |
+
- type: "resnet"
|
37 |
+
name: "normal_head"
|
38 |
+
freeze: false
|
39 |
+
args:
|
40 |
+
n_blocks: 0
|
41 |
+
d_hidden: 128
|
42 |
+
final_prediction_head: "normal_head"
|
43 |
+
|
44 |
+
encoding_strategy:
|
45 |
+
name: "default"
|
46 |
+
args: {}
|
47 |
+
eval_encoding_strategy:
|
48 |
+
name: "default"
|
49 |
+
args: null
|
50 |
+
loss_renderer_strategy:
|
51 |
+
name: "kitti_360"
|
52 |
+
args: null
|
53 |
+
eval_loss_renderer_strategy:
|
54 |
+
name: "single_renderer"
|
55 |
+
args:
|
56 |
+
shuffle_frames: false
|
57 |
+
all_frames: true
|
58 |
+
|
59 |
+
inv_z: true
|
60 |
+
|
61 |
+
learn_empty: false
|
62 |
+
code_mode: z
|
63 |
+
|
64 |
+
n_frames_render: 4 # number of frames to render among v==8
|
configs/model/dinov2_downsampler.yaml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
arch: "BTSNet"
|
2 |
+
use_code: true
|
3 |
+
prediction_mode: default
|
4 |
+
|
5 |
+
predict_dino: true
|
6 |
+
dino_dims: 64 # == encoder.pca_dino_out
|
7 |
+
|
8 |
+
compensate_artifacts: true
|
9 |
+
flip_augmentation: true
|
10 |
+
|
11 |
+
encoder:
|
12 |
+
type: "dinov2"
|
13 |
+
mode: "downsample-prediction" # upsample-gt, downsample-pred
|
14 |
+
decoder_arch: "dpt"
|
15 |
+
# upsampler_arch: "multiscale-crop" # multiscale-crop, nearest
|
16 |
+
downsampler_arch: "featup" # featup, bilinear
|
17 |
+
encoder_arch: "vit-b" # vit-s, vit-b
|
18 |
+
version: "v2" # v1, v2, reg, fit3d
|
19 |
+
separate_gt_version: "v2" # v1, v2, reg, fit3d, None
|
20 |
+
encoder_freeze: false
|
21 |
+
flip_avg_gt: false
|
22 |
+
dim_reduction_arch: "mlp"
|
23 |
+
num_ch_enc: [64, 64, 128, 256]
|
24 |
+
intermediate_features: [3, 6, 9]
|
25 |
+
decoder_out_dim: 256
|
26 |
+
dino_pca_dim: 64 # == dino_dims
|
27 |
+
image_size: [192, 640]
|
28 |
+
key_features: false
|
29 |
+
|
30 |
+
code:
|
31 |
+
num_freqs: 6
|
32 |
+
freq_factor: 1.5
|
33 |
+
include_input: true
|
34 |
+
|
35 |
+
decoder_heads:
|
36 |
+
- type: "resnet"
|
37 |
+
name: "normal_head"
|
38 |
+
freeze: false
|
39 |
+
args:
|
40 |
+
n_blocks: 0
|
41 |
+
d_hidden: 128
|
42 |
+
final_prediction_head: "normal_head"
|
43 |
+
|
44 |
+
encoding_strategy:
|
45 |
+
name: "default"
|
46 |
+
args: {}
|
47 |
+
eval_encoding_strategy:
|
48 |
+
name: "default"
|
49 |
+
args: null
|
50 |
+
loss_renderer_strategy:
|
51 |
+
name: "kitti_360"
|
52 |
+
args: null
|
53 |
+
eval_loss_renderer_strategy:
|
54 |
+
name: "single_renderer"
|
55 |
+
args:
|
56 |
+
shuffle_frames: false
|
57 |
+
all_frames: true
|
58 |
+
|
59 |
+
inv_z: true
|
60 |
+
|
61 |
+
learn_empty: false
|
62 |
+
code_mode: z
|
63 |
+
|
64 |
+
n_frames_render: 4 # number of frames to render among v==8
|
configs/renderer/pixelnerf.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
n_coarse : 32
|
2 |
+
n_fine : 0
|
3 |
+
n_fine_depth : 0
|
4 |
+
depth_std : 1.0
|
5 |
+
sched : []
|
6 |
+
white_bkgd : false
|
7 |
+
lindisp: true
|
8 |
+
hard_alpha_cap: true
|
9 |
+
eval_batch_size: 65536
|
configs/train_scenedino_kitti_360.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: kitti_360_sscbench
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: scenedino
|
6 |
+
- validation: scenedino
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
training_type: "full_training"
|
10 |
+
mode: "nvs"
|
11 |
+
seed: 0
|
12 |
+
backend: null
|
13 |
+
nproc_per_node: null
|
14 |
+
with_amp: true
|
15 |
+
name: "training"
|
16 |
+
batch_size: 4
|
17 |
+
num_workers: 4
|
18 |
+
|
19 |
+
output:
|
20 |
+
path: "out/features-paper"
|
21 |
+
unique_id: scenedino-kitti-360-sscbench
|
22 |
+
|
23 |
+
renderer:
|
24 |
+
n_coarse : 32
|
25 |
+
n_fine : 0
|
26 |
+
n_fine_depth : 0
|
27 |
+
depth_std : 1.0
|
28 |
+
sched : []
|
29 |
+
white_bkgd : false
|
30 |
+
lindisp: true
|
31 |
+
hard_alpha_cap: true
|
32 |
+
render_mode: volumetric
|
33 |
+
eval_batch_size: 65536
|
34 |
+
normalize_dino: true
|
35 |
+
|
36 |
+
training:
|
37 |
+
ray_sampler:
|
38 |
+
args:
|
39 |
+
patch_size: 8
|
40 |
+
# ray_batch_size: 512
|
41 |
+
|
42 |
+
scheduler:
|
43 |
+
step_size: 50000
|
configs/train_scenedino_re10k.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: realestate10k
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: scenedino
|
6 |
+
- validation: scenedino
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
training_type: "full_training"
|
10 |
+
mode: "nvs"
|
11 |
+
seed: 0
|
12 |
+
backend: null
|
13 |
+
nproc_per_node: null
|
14 |
+
with_amp: true
|
15 |
+
name: "training"
|
16 |
+
batch_size: 4
|
17 |
+
num_workers: 4
|
18 |
+
|
19 |
+
output:
|
20 |
+
path: "out/features-paper"
|
21 |
+
unique_id: scenedino-re10k
|
22 |
+
|
23 |
+
renderer:
|
24 |
+
n_coarse : 32
|
25 |
+
n_fine : 0
|
26 |
+
n_fine_depth : 0
|
27 |
+
depth_std : 1.0
|
28 |
+
sched : []
|
29 |
+
white_bkgd : false
|
30 |
+
lindisp: true
|
31 |
+
hard_alpha_cap: true
|
32 |
+
render_mode: volumetric
|
33 |
+
eval_batch_size: 65536
|
34 |
+
normalize_dino: true
|
35 |
+
|
36 |
+
model:
|
37 |
+
encoder:
|
38 |
+
image_size: [288, 512]
|
39 |
+
loss_renderer_strategy:
|
40 |
+
name: "alternate"
|
41 |
+
|
42 |
+
training:
|
43 |
+
ray_sampler:
|
44 |
+
args:
|
45 |
+
patch_size: 8
|
46 |
+
# ray_batch_size: 512
|
47 |
+
|
48 |
+
scheduler:
|
49 |
+
step_size: 50000
|
configs/train_semantic_kitti_360.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- dataset: kitti_360_sscbench
|
3 |
+
- model: dino_downsampler
|
4 |
+
- renderer: pixelnerf
|
5 |
+
- training: semantic
|
6 |
+
- validation: semantic
|
7 |
+
- downstream: semantic
|
8 |
+
- _self_
|
9 |
+
|
10 |
+
training_type: "downstream_training"
|
11 |
+
mode: "nvs"
|
12 |
+
seed: 0
|
13 |
+
backend: null
|
14 |
+
nproc_per_node: null
|
15 |
+
with_amp: true
|
16 |
+
name: "training"
|
17 |
+
batch_size: 4
|
18 |
+
gradient_accum_factor: 1
|
19 |
+
num_workers: 6
|
20 |
+
|
21 |
+
renderer:
|
22 |
+
n_coarse : 32
|
23 |
+
n_fine : 0
|
24 |
+
n_fine_depth : 0
|
25 |
+
depth_std : 1.0
|
26 |
+
sched : []
|
27 |
+
white_bkgd : false
|
28 |
+
lindisp: true
|
29 |
+
hard_alpha_cap: true
|
30 |
+
render_mode: volumetric
|
31 |
+
eval_batch_size: 65536
|
32 |
+
normalize_dino: true
|
33 |
+
|
34 |
+
output:
|
35 |
+
path: "out/ssc-paper"
|
36 |
+
unique_id: ssc-kitti-360-sscbench
|
37 |
+
|
38 |
+
training:
|
39 |
+
epoch_length: 1000
|
40 |
+
resume_from: "<PATH-FEATURE-CHECKPOINT>.pt"
|
41 |
+
|
42 |
+
optimizer:
|
43 |
+
args:
|
44 |
+
lr: 5e-4
|
45 |
+
|
46 |
+
model:
|
47 |
+
sample_radius_3d: 0.5
|
48 |
+
|
49 |
+
downstream:
|
50 |
+
input_dim: 768
|
51 |
+
mode: "3d"
|
52 |
+
# mlp_head: true
|
configs/training/loss/scenedino.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- type: reconstruction
|
2 |
+
coarse:
|
3 |
+
criterion: "l1+ssim"
|
4 |
+
dino_criterion: "cosine"
|
5 |
+
invalid_policy: weight_guided
|
6 |
+
|
7 |
+
reconstruct_dino: true
|
8 |
+
lambda_dino_coarse: 0.2
|
9 |
+
temperature_dino: 5
|
10 |
+
|
11 |
+
regularizations:
|
12 |
+
- type: edge_aware_smoothness
|
13 |
+
lambda: 0.001
|
14 |
+
- type: dino_edge_aware_smoothness
|
15 |
+
lambda: 0.25
|
configs/training/loss/semantic.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- type: stego
|
2 |
+
|
3 |
+
random_weight: 0.6702352279261414
|
4 |
+
knn_weight: 0.4156436438453117
|
5 |
+
self_weight: 0.08146997886146659
|
6 |
+
random_shift: 0.8709334888837256
|
7 |
+
knn_shift: 0.18458300726748128
|
8 |
+
self_shift: 0.43610463774158115
|
9 |
+
|
10 |
+
pointwise: false
|
configs/training/optimizer/scenedino.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
type: "adam"
|
2 |
+
args:
|
3 |
+
lr: 1e-4
|
4 |
+
betas: [0.9, 0.999]
|
5 |
+
eps: 1e-08
|
6 |
+
weight_decay: 0.0
|
7 |
+
amsgrad: false
|
configs/training/optimizer/semantic.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
type: "adam"
|
2 |
+
args:
|
3 |
+
lr: 5e-4
|
4 |
+
betas: [0.9, 0.999]
|
5 |
+
eps: 1e-08
|
6 |
+
weight_decay: 0.0
|
7 |
+
amsgrad: false
|
configs/training/scenedino.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- optimizer: scenedino
|
3 |
+
- scheduler: scenedino
|
4 |
+
- loss: scenedino
|
5 |
+
- _self_
|
6 |
+
|
7 |
+
num_epochs: 50
|
8 |
+
continue: false
|
9 |
+
|
10 |
+
checkpoint_every: 10000
|
11 |
+
log_every_iters: 100
|
12 |
+
|
13 |
+
ray_sampler:
|
14 |
+
z_near: 3
|
15 |
+
z_far: 80
|
16 |
+
sample_mode: "patch"
|
17 |
+
args:
|
18 |
+
patch_size: 16
|
19 |
+
ray_batch_size: 2048
|
20 |
+
snap_to_grid: true
|
21 |
+
dino_upscaled: false
|
configs/training/scheduler/scenedino.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
type: step
|
2 |
+
step_size: 100000
|
3 |
+
gamma: 0.1
|
configs/training/semantic.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- optimizer: semantic
|
3 |
+
- loss: semantic
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
num_epochs: 1
|
7 |
+
epoch_length: 2500
|
8 |
+
continue: false
|
9 |
+
|
10 |
+
checkpoint_every: 5000
|
11 |
+
log_every_iters: 250
|
12 |
+
|
13 |
+
ray_sampler:
|
14 |
+
z_near: 3
|
15 |
+
z_far: 80
|
16 |
+
sample_mode: "image"
|
configs/validation/scenedino.yaml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
validation:
|
2 |
+
metrics:
|
3 |
+
- type: depth
|
4 |
+
args: null
|
5 |
+
- type: dino
|
6 |
+
args: null
|
7 |
+
subset:
|
8 |
+
type: range
|
9 |
+
args:
|
10 |
+
start: 0
|
11 |
+
end: 128
|
12 |
+
save_best:
|
13 |
+
metric: dino_cos_sim
|
14 |
+
sign: 1
|
15 |
+
log_loss: false
|
16 |
+
global_step:
|
17 |
+
type: "trainer iteration"
|
18 |
+
events:
|
19 |
+
# - type: STARTED
|
20 |
+
# args: null
|
21 |
+
- type: ITERATION_COMPLETED
|
22 |
+
args:
|
23 |
+
every: 5000
|
24 |
+
# - type: EPOCH_COMPLETED
|
25 |
+
# args:
|
26 |
+
# every: 1
|
27 |
+
- type: COMPLETED
|
28 |
+
args: null
|
29 |
+
|
30 |
+
visualization:
|
31 |
+
metrics:
|
32 |
+
- type: depth
|
33 |
+
args: null
|
34 |
+
subset:
|
35 |
+
type: range
|
36 |
+
args:
|
37 |
+
start: 200
|
38 |
+
end: 201
|
39 |
+
visualize:
|
40 |
+
input_imgs: null
|
41 |
+
reconstructed_imgs: null
|
42 |
+
reconstruction_rmse: null
|
43 |
+
dino_gt: null
|
44 |
+
reconstructed_dino: null
|
45 |
+
reconstructed_dino_downsampled: null
|
46 |
+
batch_dino_gt: null
|
47 |
+
batch_dino_artifacts: null
|
48 |
+
batch_dino_features_kmeans: null
|
49 |
+
batch_dino_gt_kmeans: null
|
50 |
+
batch_reconstructed_dino: null
|
51 |
+
batch_reconstructed_dino_downsampled: null
|
52 |
+
dino_downsampling_salience: null
|
53 |
+
dino_downsampling_weight: null
|
54 |
+
dino_downsampling_per_patch_weight: null
|
55 |
+
dino_cos_sim_downsampled: null
|
56 |
+
depth: null
|
57 |
+
depth_profile: null
|
58 |
+
alpha_sum: null
|
59 |
+
ray_entropy: null
|
60 |
+
ray_entropy_weights: null
|
61 |
+
invalids: null
|
62 |
+
rendered_flow: null
|
63 |
+
predicted_occlusions: null
|
64 |
+
uncertainty: null
|
65 |
+
log_loss: false
|
66 |
+
global_step:
|
67 |
+
type: "trainer iteration"
|
68 |
+
events:
|
69 |
+
- type: STARTED
|
70 |
+
args: null
|
71 |
+
- type: ITERATION_COMPLETED
|
72 |
+
args:
|
73 |
+
every: 5000
|
74 |
+
# - type: EPOCH_COMPLETED
|
75 |
+
# args:
|
76 |
+
# every: 1
|
77 |
+
- type: COMPLETED
|
78 |
+
args: null
|
configs/validation/semantic.yaml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
validation:
|
2 |
+
metrics:
|
3 |
+
- type: seg
|
4 |
+
agg_type: unsup_seg
|
5 |
+
args:
|
6 |
+
n_classes: 19
|
7 |
+
gt_classes: 19
|
8 |
+
- type: stego
|
9 |
+
agg_type: concat
|
10 |
+
subset:
|
11 |
+
type: random
|
12 |
+
args:
|
13 |
+
size: 32
|
14 |
+
save_best:
|
15 |
+
metric: "stego_cluster_weighted_miou"
|
16 |
+
update_model: true
|
17 |
+
dry_run: false
|
18 |
+
log_loss: false
|
19 |
+
global_step:
|
20 |
+
type: "trainer iteration"
|
21 |
+
events:
|
22 |
+
# - type: STARTED
|
23 |
+
# args: null
|
24 |
+
- type: ITERATION_COMPLETED
|
25 |
+
args:
|
26 |
+
every: 100
|
27 |
+
# - type: EPOCH_COMPLETED
|
28 |
+
# args:
|
29 |
+
# every: 1
|
30 |
+
# - type: COMPLETED
|
31 |
+
# args: null
|
32 |
+
|
33 |
+
visualization_seg:
|
34 |
+
metrics: {}
|
35 |
+
subset:
|
36 |
+
type: range
|
37 |
+
args:
|
38 |
+
start: 300
|
39 |
+
end: 301
|
40 |
+
visualize:
|
41 |
+
input_imgs: null
|
42 |
+
# reconstructed_imgs: null
|
43 |
+
# reconstruction_rmse: null
|
44 |
+
dino_gt: null
|
45 |
+
# reconstructed_dino: null
|
46 |
+
# reconstructed_dino_downsampled: null
|
47 |
+
batch_dino_gt: null
|
48 |
+
batch_dino_artifacts: null
|
49 |
+
segs_gt: null
|
50 |
+
segs_pred: null
|
51 |
+
batch_reconstructed_dino: null
|
52 |
+
batch_dino_features_kmeans: null
|
53 |
+
# batch_reconstructed_dino_downsampled: null
|
54 |
+
# dino_downsampling_salience: null
|
55 |
+
# dino_downsampling_weight: null
|
56 |
+
# dino_downsampling_per_patch_weight: null
|
57 |
+
# dino_cos_sim_downsampled: null,
|
58 |
+
depth: null
|
59 |
+
# depth_profile: null
|
60 |
+
# alpha_sum: null
|
61 |
+
# ray_entropy: null
|
62 |
+
# ray_entropy_weights: null
|
63 |
+
# invalids: null
|
64 |
+
# rendered_flow: null
|
65 |
+
# predicted_occlusions: null
|
66 |
+
# uncertainty: null
|
67 |
+
log_loss: false
|
68 |
+
global_step:
|
69 |
+
type: "trainer iteration"
|
70 |
+
events:
|
71 |
+
- type: STARTED
|
72 |
+
args: null
|
73 |
+
- type: ITERATION_COMPLETED
|
74 |
+
args:
|
75 |
+
every: 100
|
76 |
+
# - type: EPOCH_COMPLETED
|
77 |
+
# args:
|
78 |
+
# every: 1
|
79 |
+
# - type: COMPLETED
|
80 |
+
# args: null
|
datasets/__init__.py
ADDED
File without changes
|
datasets/bdd/bdd_dataset.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from torchvision import transforms
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
from collections import namedtuple
|
13 |
+
from datasets.kitti_360.labels import trainId2label
|
14 |
+
|
15 |
+
|
16 |
+
Label = namedtuple(
|
17 |
+
"Label",
|
18 |
+
[
|
19 |
+
"name",
|
20 |
+
"id",
|
21 |
+
"trainId",
|
22 |
+
"category",
|
23 |
+
"categoryId",
|
24 |
+
"hasInstances",
|
25 |
+
"ignoreInEval",
|
26 |
+
"color",
|
27 |
+
"to_cs27",
|
28 |
+
],
|
29 |
+
)
|
30 |
+
|
31 |
+
BDD_LABEL = [
|
32 |
+
Label("unlabeled", 0, 255, "void", 0, False, True, (0, 0, 0), 255),
|
33 |
+
Label("dynamic", 1, 255, "void", 0, False, True, (111, 74, 0), 255),
|
34 |
+
Label("ego vehicle", 2, 255, "void", 0, False, True, (0, 0, 0), 255),
|
35 |
+
Label("ground", 3, 255, "void", 0, False, True, (81, 0, 81), 255),
|
36 |
+
Label("static", 4, 255, "void", 0, False, True, (0, 0, 0), 255),
|
37 |
+
Label("parking", 5, 255, "flat", 1, False, True, (250, 170, 160), 2),
|
38 |
+
Label("rail track", 6, 255, "flat", 1, False, True, (230, 150, 140), 3),
|
39 |
+
Label("road", 7, 0, "flat", 1, False, False, (128, 64, 128), 0),
|
40 |
+
Label("sidewalk", 8, 1, "flat", 1, False, False, (244, 35, 232), 1),
|
41 |
+
Label("bridge", 9, 255, "construction", 2, False, True, (150, 100, 100), 8),
|
42 |
+
Label("building", 10, 2, "construction", 2, False, False, (70, 70, 70), 4),
|
43 |
+
Label("fence", 11, 4, "construction", 2, False, False, (190, 153, 153), 6),
|
44 |
+
Label("garage", 12, 255, "construction", 2, False, True, (180, 100, 180), 255),
|
45 |
+
Label("guard rail", 13, 255, "construction", 2, False, True, (180, 165, 180), 7),
|
46 |
+
Label("tunnel", 14, 255, "construction", 2, False, True, (150, 120, 90), 9),
|
47 |
+
Label("wall", 15, 3, "construction", 2, False, False, (102, 102, 156), 5),
|
48 |
+
Label("banner", 16, 255, "object", 3, False, True, (250, 170, 100), 255),
|
49 |
+
Label("billboard", 17, 255, "object", 3, False, True, (220, 220, 250), 255),
|
50 |
+
Label("lane divider", 18, 255, "object", 3, False, True, (255, 165, 0), 255),
|
51 |
+
Label("parking sign", 19, 255, "object", 3, False, False, (220, 20, 60), 255),
|
52 |
+
Label("pole", 20, 5, "object", 3, False, False, (153, 153, 153), 10),
|
53 |
+
Label("polegroup", 21, 255, "object", 3, False, True, (153, 153, 153), 11),
|
54 |
+
Label("street light", 22, 255, "object", 3, False, True, (220, 220, 100), 255),
|
55 |
+
Label("traffic cone", 23, 255, "object", 3, False, True, (255, 70, 0), 255),
|
56 |
+
Label("traffic device", 24, 255, "object", 3, False, True, (220, 220, 220), 255),
|
57 |
+
Label("traffic light", 25, 6, "object", 3, False, False, (250, 170, 30), 12),
|
58 |
+
Label("traffic sign", 26, 7, "object", 3, False, False, (220, 220, 0), 13),
|
59 |
+
Label("traffic sign frame", 27, 255, "object", 3, False, True, (250, 170, 250), 255),
|
60 |
+
Label("terrain", 28, 9, "nature", 4, False, False, (152, 251, 152), 15),
|
61 |
+
Label("vegetation", 29, 8, "nature", 4, False, False, (107, 142, 35), 14),
|
62 |
+
Label("sky", 30, 10, "sky", 5, False, False, (70, 130, 180), 16),
|
63 |
+
Label("person", 31, 11, "human", 6, True, False, (220, 20, 60), 17),
|
64 |
+
Label("rider", 32, 12, "human", 6, True, False, (255, 0, 0), 18),
|
65 |
+
Label("bicycle", 33, 18, "vehicle", 7, True, False, (119, 11, 32), 26),
|
66 |
+
Label("bus", 34, 15, "vehicle", 7, True, False, (0, 60, 100), 21),
|
67 |
+
Label("car", 35, 13, "vehicle", 7, True, False, (0, 0, 142), 19),
|
68 |
+
Label("caravan", 36, 255, "vehicle", 7, True, True, (0, 0, 90), 22),
|
69 |
+
Label("motorcycle", 37, 17, "vehicle", 7, True, False, (0, 0, 230), 25),
|
70 |
+
Label("trailer", 38, 255, "vehicle", 7, True, True, (0, 0, 110), 23),
|
71 |
+
Label("train", 39, 16, "vehicle", 7, True, False, (0, 80, 100), 24),
|
72 |
+
Label("truck", 40, 14, "vehicle", 7, True, False, (0, 0, 70), 20),
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
def resize_with_padding(img, target_size, padding_value, interpolation):
|
77 |
+
target_h, target_w = target_size
|
78 |
+
width, height = img.size
|
79 |
+
aspect = width / height
|
80 |
+
|
81 |
+
if aspect > (target_w / target_h):
|
82 |
+
new_w = target_w
|
83 |
+
new_h = int(target_w / aspect)
|
84 |
+
else:
|
85 |
+
new_h = target_h
|
86 |
+
new_w = int(target_h * aspect)
|
87 |
+
|
88 |
+
img = transforms.functional.resize(img, (new_h, new_w), interpolation)
|
89 |
+
|
90 |
+
pad_h = target_h - new_h
|
91 |
+
pad_w = target_w - new_w
|
92 |
+
padding = (pad_w // 2, pad_h // 2, pad_w - pad_w // 2, pad_h - pad_h // 2)
|
93 |
+
|
94 |
+
return transforms.functional.pad(img, padding, fill=padding_value)
|
95 |
+
|
96 |
+
|
97 |
+
class BDDSeg(Dataset):
|
98 |
+
def __init__(self, root, image_set, image_size=(192, 640)):
|
99 |
+
super(BDDSeg, self).__init__()
|
100 |
+
self.split = image_set
|
101 |
+
self.root = root
|
102 |
+
|
103 |
+
self.image_transform = transforms.Compose([
|
104 |
+
#transforms.Lambda(lambda img: resize_with_padding(img, image_size, padding_value=0, interpolation=transforms.InterpolationMode.BILINEAR)),
|
105 |
+
|
106 |
+
transforms.Resize((320, 640), interpolation=transforms.InterpolationMode.BILINEAR),
|
107 |
+
transforms.CenterCrop(image_size),
|
108 |
+
transforms.ToTensor(),
|
109 |
+
])
|
110 |
+
|
111 |
+
self.target_transform = transforms.Compose([
|
112 |
+
#transforms.Lambda(lambda img: resize_with_padding(img, image_size, padding_value=-1, interpolation=transforms.InterpolationMode.NEAREST)),
|
113 |
+
|
114 |
+
transforms.Resize((320, 640), interpolation=transforms.InterpolationMode.NEAREST),
|
115 |
+
transforms.CenterCrop(image_size),
|
116 |
+
transforms.PILToTensor(),
|
117 |
+
transforms.Lambda(lambda x: x.long()),
|
118 |
+
])
|
119 |
+
|
120 |
+
self.images, self.targets = [], []
|
121 |
+
|
122 |
+
image_dir = os.path.join(self.root, "images/10k", self.split)
|
123 |
+
target_dir = os.path.join(self.root, "labels/pan_seg/bitmasks", self.split)
|
124 |
+
for file_name in os.listdir(image_dir):
|
125 |
+
image_path = os.path.join(image_dir, file_name)
|
126 |
+
|
127 |
+
target_filename = os.path.splitext(file_name)[0] + ".png"
|
128 |
+
target_path = os.path.join(target_dir, target_filename)
|
129 |
+
assert os.path.isfile(target_path)
|
130 |
+
|
131 |
+
self.images.append(image_path)
|
132 |
+
self.targets.append(target_path)
|
133 |
+
|
134 |
+
self.class_mapping = torch.Tensor([trainId2label[c.trainId].id for c in BDD_LABEL]).int()
|
135 |
+
|
136 |
+
def __getitem__(self, index):
|
137 |
+
_start_time = time.time()
|
138 |
+
|
139 |
+
image = Image.open(self.images[index]).convert("RGB")
|
140 |
+
target = Image.open(self.targets[index])
|
141 |
+
|
142 |
+
image = self.image_transform(image)
|
143 |
+
target = self.target_transform(target)
|
144 |
+
|
145 |
+
image = 2.0 * image - 1.0
|
146 |
+
poses = torch.eye(4) # (4, 4)
|
147 |
+
projs = torch.eye(3) # (3, 3)
|
148 |
+
target = target[0] # ("instance", "semantic", "polygon", "color")
|
149 |
+
target = self.class_mapping[target]
|
150 |
+
|
151 |
+
_proc_time = time.time() - _start_time
|
152 |
+
|
153 |
+
data = {
|
154 |
+
"imgs": [image.numpy()],
|
155 |
+
"poses": [poses.numpy()],
|
156 |
+
"projs": [projs.numpy()],
|
157 |
+
"segs": [target.numpy()],
|
158 |
+
"t__get_item__": np.array([_proc_time]),
|
159 |
+
"index": [np.array([index])],
|
160 |
+
}
|
161 |
+
return data
|
162 |
+
|
163 |
+
def __len__(self):
|
164 |
+
return len(self.images)
|
datasets/cityscapes/cityscapes_dataset.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from torchvision import transforms
|
7 |
+
from torchvision.datasets.cityscapes import Cityscapes
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
|
11 |
+
def resize_with_padding(img, target_size, padding_value, interpolation):
|
12 |
+
target_h, target_w = target_size
|
13 |
+
width, height = img.size
|
14 |
+
aspect = width / height
|
15 |
+
|
16 |
+
if aspect > (target_w / target_h):
|
17 |
+
new_w = target_w
|
18 |
+
new_h = int(target_w / aspect)
|
19 |
+
else:
|
20 |
+
new_h = target_h
|
21 |
+
new_w = int(target_h * aspect)
|
22 |
+
|
23 |
+
img = transforms.functional.resize(img, (new_h, new_w), interpolation)
|
24 |
+
|
25 |
+
pad_h = target_h - new_h
|
26 |
+
pad_w = target_w - new_w
|
27 |
+
padding = (pad_w // 2, pad_h // 2, pad_w - pad_w // 2, pad_h - pad_h // 2)
|
28 |
+
|
29 |
+
return transforms.functional.pad(img, padding, fill=padding_value)
|
30 |
+
|
31 |
+
class CityscapesSeg(Dataset):
|
32 |
+
def __init__(self, root, image_set, image_size=(192, 640)):
|
33 |
+
super(CityscapesSeg, self).__init__()
|
34 |
+
self.split = image_set
|
35 |
+
self.root = root
|
36 |
+
|
37 |
+
transform = transforms.Compose([
|
38 |
+
#transforms.Lambda(lambda img: resize_with_padding(img, image_size, padding_value=0, interpolation=transforms.InterpolationMode.BILINEAR)),
|
39 |
+
|
40 |
+
transforms.Resize((320, 640), interpolation=transforms.InterpolationMode.BILINEAR),
|
41 |
+
transforms.CenterCrop(image_size),
|
42 |
+
transforms.ToTensor(),
|
43 |
+
])
|
44 |
+
|
45 |
+
target_transform = transforms.Compose([
|
46 |
+
#transforms.Lambda(lambda img: resize_with_padding(img, image_size, padding_value=-1, interpolation=transforms.InterpolationMode.NEAREST)),
|
47 |
+
|
48 |
+
transforms.Resize((320, 640), interpolation=transforms.InterpolationMode.NEAREST),
|
49 |
+
transforms.CenterCrop(image_size),
|
50 |
+
transforms.PILToTensor(),
|
51 |
+
transforms.Lambda(lambda x: x.long()),
|
52 |
+
])
|
53 |
+
|
54 |
+
self.inner_loader = Cityscapes(self.root, image_set,
|
55 |
+
mode="fine",
|
56 |
+
target_type="semantic",
|
57 |
+
transform=transform,
|
58 |
+
target_transform=target_transform)
|
59 |
+
|
60 |
+
def __getitem__(self, index):
|
61 |
+
_start_time = time.time()
|
62 |
+
image, target = self.inner_loader[index] # (3, h, w) / (1, h, w)
|
63 |
+
|
64 |
+
image = 2.0 * image - 1.0
|
65 |
+
poses = torch.eye(4) # (4, 4)
|
66 |
+
projs = torch.eye(3) # (3, 3)
|
67 |
+
target = target.squeeze(0) # (h, w)
|
68 |
+
|
69 |
+
_proc_time = time.time() - _start_time
|
70 |
+
|
71 |
+
data = {
|
72 |
+
"imgs": [image.numpy()],
|
73 |
+
"poses": [poses.numpy()],
|
74 |
+
"projs": [projs.numpy()],
|
75 |
+
"segs": [target.numpy()],
|
76 |
+
"t__get_item__": np.array([_proc_time]),
|
77 |
+
"index": [np.array([index])],
|
78 |
+
}
|
79 |
+
return data
|
80 |
+
|
81 |
+
def __len__(self):
|
82 |
+
return len(self.inner_loader)
|
datasets/data_util.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from datasets.kitti_360.kitti_360_dataset import Kitti360Dataset
|
4 |
+
from datasets.kitti_odom.kitti_odometry_dataset import KittiOdometryDataset
|
5 |
+
from datasets.kitti_raw.kitti_raw_dataset import KittiRawDataset
|
6 |
+
from datasets.nyu_depth_v2.nyu_depth_v2_dataset import NYUDepthV2Dataset
|
7 |
+
from datasets.realestate10k.realestate10k_dataset import RealEstate10kDataset
|
8 |
+
from datasets.waymo.waymo_dataset import WaymoDataset
|
9 |
+
|
10 |
+
|
11 |
+
def make_datasets(config):
|
12 |
+
type = config.get("type", "KITTI_Raw")
|
13 |
+
if type == "KITTI_Odometry":
|
14 |
+
train_dataset = KittiOdometryDataset(
|
15 |
+
base_path=config["data_path"],
|
16 |
+
frame_count=config.get("data_fc", 1),
|
17 |
+
target_image_size=config.get("image_size", (128, 256)),
|
18 |
+
return_stereo=config.get("data_stereo", False),
|
19 |
+
sequences=config.get("train_sequences", ("00",)),
|
20 |
+
custom_pose_path=config.get("custom_pose_path", None),
|
21 |
+
keyframe_offset=0 #-(config.get("data_fc", 1) // 2)
|
22 |
+
)
|
23 |
+
test_dataset = KittiOdometryDataset(
|
24 |
+
base_path=config["data_path"],
|
25 |
+
frame_count=config.get("data_fc", 1),
|
26 |
+
target_image_size=config.get("image_size", (128, 256)),
|
27 |
+
return_stereo=config.get("data_stereo", False),
|
28 |
+
sequences=config.get("val_sequences", ("00",)),
|
29 |
+
custom_pose_path=config.get("custom_pose_path", None),
|
30 |
+
keyframe_offset=0 #-(config.get("data_fc", 1) // 2)
|
31 |
+
)
|
32 |
+
return train_dataset, test_dataset
|
33 |
+
|
34 |
+
elif type == "KITTI_Raw":
|
35 |
+
train_dataset = KittiRawDataset(
|
36 |
+
data_path=config["data_path"],
|
37 |
+
pose_path=config["pose_path"],
|
38 |
+
split_path=os.path.join(config["split_path"], "train_files.txt"),
|
39 |
+
target_image_size=config.get("image_size", (192, 640)),
|
40 |
+
frame_count=config.get("data_fc", 1),
|
41 |
+
return_stereo=config.get("data_stereo", False),
|
42 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
43 |
+
dilation=config.get("dilation", 1),
|
44 |
+
color_aug=config.get("color_aug", False)
|
45 |
+
)
|
46 |
+
test_dataset = KittiRawDataset(
|
47 |
+
data_path=config["data_path"],
|
48 |
+
pose_path=config["pose_path"],
|
49 |
+
split_path=os.path.join(config["split_path"], "val_files.txt"),
|
50 |
+
target_image_size=config.get("image_size", (192, 640)),
|
51 |
+
frame_count=config.get("data_fc", 1),
|
52 |
+
return_stereo=config.get("data_stereo", False),
|
53 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
54 |
+
dilation=config.get("dilation", 1),
|
55 |
+
)
|
56 |
+
return train_dataset, test_dataset
|
57 |
+
|
58 |
+
elif type == "KITTI_360":
|
59 |
+
if config.get("split_path", None) is None:
|
60 |
+
train_split_path = None
|
61 |
+
test_split_path = None
|
62 |
+
else:
|
63 |
+
train_split_path = os.path.join(config["split_path"], "train_files.txt")
|
64 |
+
test_split_path = os.path.join(config["split_path"], "val_files.txt")
|
65 |
+
|
66 |
+
train_dataset = Kitti360Dataset(
|
67 |
+
data_path=config["data_path"],
|
68 |
+
pose_path=config["pose_path"],
|
69 |
+
split_path=train_split_path,
|
70 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
71 |
+
frame_count=config.get("data_fc", 3),
|
72 |
+
return_stereo=config.get("data_stereo", True),
|
73 |
+
return_fisheye=config.get("data_fisheye", True),
|
74 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
75 |
+
return_segmentation=config.get("data_segmentation", False),
|
76 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
77 |
+
dilation=config.get("dilation", 1),
|
78 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
79 |
+
fisheye_offset=config.get("fisheye_offset", 1),
|
80 |
+
color_aug=config.get("color_aug", False),
|
81 |
+
is_preprocessed=config.get("is_preprocessed", False)
|
82 |
+
)
|
83 |
+
test_dataset = Kitti360Dataset(
|
84 |
+
data_path=config["data_path"],
|
85 |
+
pose_path=config["pose_path"],
|
86 |
+
split_path=test_split_path,
|
87 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
88 |
+
frame_count=config.get("data_fc", 3),
|
89 |
+
return_stereo=config.get("data_stereo", True),
|
90 |
+
return_fisheye=config.get("data_fisheye", True),
|
91 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
92 |
+
return_segmentation=config.get("data_segmentation", False),
|
93 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
94 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
95 |
+
fisheye_offset=config.get("fisheye_offset", 1),
|
96 |
+
dilation=config.get("dilation", 1),
|
97 |
+
is_preprocessed=config.get("is_preprocessed", False)
|
98 |
+
)
|
99 |
+
return train_dataset, test_dataset
|
100 |
+
|
101 |
+
elif type == "RealEstate10k":
|
102 |
+
train_dataset = RealEstate10kDataset(
|
103 |
+
data_path=config["data_path"],
|
104 |
+
split_path=None,
|
105 |
+
target_image_size=config.get("image_size", (256, 384)),
|
106 |
+
frame_count=config.get("data_fc", 2),
|
107 |
+
keyframe_offset=0, #-(config.get("data_fc", 1) // 2),
|
108 |
+
dilation=config.get("dilation", 10),
|
109 |
+
color_aug=config.get("color_aug", False)
|
110 |
+
)
|
111 |
+
test_dataset = RealEstate10kDataset(
|
112 |
+
data_path=config["data_path"],
|
113 |
+
split_path=os.path.join(config["split_path"], "val_files.txt"),
|
114 |
+
target_image_size=config.get("image_size", (256, 384)),
|
115 |
+
frame_count=config.get("data_fc", 2),
|
116 |
+
keyframe_offset=0, #-(config.get("data_fc", 1) // 2),
|
117 |
+
dilation=config.get("dilation", 10),
|
118 |
+
color_aug=False
|
119 |
+
)
|
120 |
+
return train_dataset, test_dataset
|
121 |
+
|
122 |
+
elif type == "Waymo":
|
123 |
+
if config.get("split_path", None) is None:
|
124 |
+
train_split_path = None
|
125 |
+
test_split_path = None
|
126 |
+
else:
|
127 |
+
train_split_path = os.path.join(config["split_path"], "train_files.txt")
|
128 |
+
test_split_path = os.path.join(config["split_path"], "val_files.txt")
|
129 |
+
|
130 |
+
train_dataset = WaymoDataset(
|
131 |
+
data_path=config["data_path"],
|
132 |
+
mode="training",
|
133 |
+
split_path=train_split_path,
|
134 |
+
target_image_size=tuple(config.get("image_size", (320, 480))),
|
135 |
+
frame_count=config.get("data_fc", 2),
|
136 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
137 |
+
return_45=config.get("return_45", True),
|
138 |
+
return_90=config.get("return_90", True),
|
139 |
+
offset_45=config.get("offset_45", 5),
|
140 |
+
offset_90=config.get("offset_90", 10),
|
141 |
+
dilation=config.get("dilation", 1),
|
142 |
+
color_aug=config.get("color_aug", True),
|
143 |
+
correct_exposure=config.get("correct_exposure", True),
|
144 |
+
)
|
145 |
+
test_dataset = WaymoDataset(
|
146 |
+
data_path=config["data_path"],
|
147 |
+
mode="validation",
|
148 |
+
split_path=test_split_path,
|
149 |
+
target_image_size=tuple(config.get("image_size", (320, 480))),
|
150 |
+
frame_count=config.get("data_fc", 2),
|
151 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
152 |
+
return_45=config.get("return_45", True),
|
153 |
+
return_90=config.get("return_90", True),
|
154 |
+
offset_45=config.get("offset_45", 5),
|
155 |
+
offset_90=config.get("offset_90", 10),
|
156 |
+
dilation=config.get("dilation", 1),
|
157 |
+
color_aug=False,
|
158 |
+
return_depth=True,
|
159 |
+
correct_exposure=config.get("correct_exposure", True),
|
160 |
+
)
|
161 |
+
return train_dataset, test_dataset
|
162 |
+
|
163 |
+
elif type == "KITTI_Raw_DFT":
|
164 |
+
train_dataset = KittiRawDataset(
|
165 |
+
data_path=config["data_path"],
|
166 |
+
pose_path=config["pose_path"],
|
167 |
+
split_path=os.path.join(config["split_path"], "train_files.txt"),
|
168 |
+
target_image_size=config.get("image_size", (192, 640)),
|
169 |
+
frame_count=config.get("data_fc", 1),
|
170 |
+
return_stereo=config.get("data_stereo", False),
|
171 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
172 |
+
dilation=config.get("dilation", 1),
|
173 |
+
color_aug=config.get("color_aug", False)
|
174 |
+
)
|
175 |
+
test_dataset = KittiRawDataset(
|
176 |
+
data_path=config["data_path"],
|
177 |
+
pose_path=config["pose_path"],
|
178 |
+
split_path=os.path.join(config["split_path"], "val_files.txt"),
|
179 |
+
target_image_size=config.get("image_size", (192, 640)),
|
180 |
+
frame_count=config.get("data_fc", 1),
|
181 |
+
return_stereo=config.get("data_stereo", False),
|
182 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
183 |
+
dilation=config.get("dilation", 1),
|
184 |
+
)
|
185 |
+
return train_dataset, test_dataset
|
186 |
+
|
187 |
+
elif type == "KITTI_360_DFT":
|
188 |
+
if config.get("split_path", None) is None:
|
189 |
+
train_split_path = None
|
190 |
+
test_split_path = None
|
191 |
+
else:
|
192 |
+
train_split_path = os.path.join(config["split_path"], "train_files.txt")
|
193 |
+
test_split_path = os.path.join(config["split_path"], "val_files.txt")
|
194 |
+
|
195 |
+
train_dataset = Kitti360Dataset(
|
196 |
+
data_path=config["data_path"],
|
197 |
+
pose_path=config["pose_path"],
|
198 |
+
split_path=train_split_path,
|
199 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
200 |
+
frame_count=config.get("data_fc", 3),
|
201 |
+
return_stereo=config.get("data_stereo", True),
|
202 |
+
return_fisheye=config.get("data_fisheye", True),
|
203 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
204 |
+
return_segmentation=config.get("data_segmentation", False),
|
205 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
206 |
+
dilation=config.get("dilation", 1),
|
207 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
208 |
+
fisheye_offset=config.get("fisheye_offset", 1),
|
209 |
+
stereo_offset=config.get("stereo_offset", 1),
|
210 |
+
color_aug=config.get("color_aug", False),
|
211 |
+
is_preprocessed=config.get("is_preprocessed", False)
|
212 |
+
)
|
213 |
+
test_dataset = Kitti360Dataset(
|
214 |
+
data_path=config["data_path"],
|
215 |
+
pose_path=config["pose_path"],
|
216 |
+
split_path=test_split_path,
|
217 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
218 |
+
frame_count=config.get("data_fc", 3),
|
219 |
+
return_stereo=config.get("data_stereo", True),
|
220 |
+
return_fisheye=config.get("data_fisheye", True),
|
221 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
222 |
+
return_segmentation=config.get("data_segmentation", False),
|
223 |
+
keyframe_offset=config.get("keyframe_offset", 0),
|
224 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
225 |
+
fisheye_offset=config.get("fisheye_offset", [10])[0], ## this modifies the offsets for all datasets including the training dataset
|
226 |
+
stereo_offset= config.get("stereo_offset", [1])[0], ## This is to set consistent evaluation with test and viz
|
227 |
+
dilation=config.get("dilation", 1),
|
228 |
+
is_preprocessed=config.get("is_preprocessed", False)
|
229 |
+
)
|
230 |
+
return train_dataset, test_dataset
|
231 |
+
|
232 |
+
else:
|
233 |
+
raise NotImplementedError(f"Unsupported dataset type: {type}")
|
234 |
+
|
235 |
+
|
236 |
+
def make_test_dataset(config):
|
237 |
+
type = config.get("type", "KITTI_Raw")
|
238 |
+
if type == "KITTI_Raw":
|
239 |
+
test_dataset = KittiRawDataset(
|
240 |
+
data_path=config["data_path"],
|
241 |
+
pose_path=config["pose_path"],
|
242 |
+
split_path=os.path.join(config["split_path"], "test_files.txt"),
|
243 |
+
target_image_size=config.get("image_size", (192, 640)),
|
244 |
+
return_depth=True,
|
245 |
+
frame_count=config.get("data_fc", 1),
|
246 |
+
return_stereo=config.get("data_stereo", False),
|
247 |
+
keyframe_offset=0
|
248 |
+
)
|
249 |
+
return test_dataset
|
250 |
+
elif type == "KITTI_360":
|
251 |
+
test_dataset = Kitti360Dataset(
|
252 |
+
data_path=config["data_path"],
|
253 |
+
pose_path=config["pose_path"],
|
254 |
+
split_path=os.path.join(config.get("split_path", None), "test_files.txt"),
|
255 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
256 |
+
frame_count=config.get("data_fc", 1),
|
257 |
+
return_stereo=config.get("data_stereo", False),
|
258 |
+
return_fisheye=config.get("data_fisheye", False),
|
259 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
260 |
+
return_segmentation=config.get("data_segmentation", False),
|
261 |
+
keyframe_offset=0,
|
262 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
263 |
+
fisheye_offset=config.get("fisheye_offset", 1),
|
264 |
+
dilation=config.get("dilation", 1),
|
265 |
+
is_preprocessed=config.get("is_preprocessed", False)
|
266 |
+
)
|
267 |
+
return test_dataset
|
268 |
+
elif type == "KITTI_360_DFT":
|
269 |
+
test_dataset = Kitti360Dataset(
|
270 |
+
data_path=config["data_path"],
|
271 |
+
pose_path=config["pose_path"],
|
272 |
+
split_path=os.path.join(config.get("split_path", None), "test_files.txt"),
|
273 |
+
target_image_size=tuple(config.get("image_size", (192, 640))),
|
274 |
+
frame_count=config.get("data_fc", 1),
|
275 |
+
return_stereo=config.get("data_stereo", False),
|
276 |
+
return_fisheye=config.get("data_fisheye", False),
|
277 |
+
return_3d_bboxes=config.get("data_3d_bboxes", False),
|
278 |
+
return_segmentation=config.get("data_segmentation", False),
|
279 |
+
keyframe_offset=0,
|
280 |
+
fisheye_rotation=config.get("fisheye_rotation", 0),
|
281 |
+
fisheye_offset=config.get("fisheye_offset", [10])[0], ## this modifies the offsets for all datasets including the training dataset
|
282 |
+
stereo_offset= config.get("stereo_offset", [1])[0], ## This is to set consistent evaluation with test and viz
|
283 |
+
dilation=config.get("dilation", 1),
|
284 |
+
is_preprocessed=config.get("is_preprocessed", False),
|
285 |
+
|
286 |
+
return_depth=True
|
287 |
+
)
|
288 |
+
return test_dataset
|
289 |
+
elif type == "RealEstate10k":
|
290 |
+
test_dataset = RealEstate10kDataset(
|
291 |
+
data_path=config["data_path"],
|
292 |
+
split_path=os.path.join(config["split_path"], "test_files.txt"),
|
293 |
+
target_image_size=config.get("image_size", (256, 384)),
|
294 |
+
frame_count=config.get("data_fc", 2),
|
295 |
+
keyframe_offset=0,
|
296 |
+
dilation=config.get("dilation", 10),
|
297 |
+
color_aug=False
|
298 |
+
)
|
299 |
+
return test_dataset
|
300 |
+
elif type == "NYU_Depth_V2":
|
301 |
+
test_dataset = NYUDepthV2Dataset(
|
302 |
+
data_path=config["data_path"],
|
303 |
+
target_image_size=config.get("image_size", (256, 384)),
|
304 |
+
)
|
305 |
+
return test_dataset
|
306 |
+
else:
|
307 |
+
raise NotImplementedError(f"Unsupported dataset type: {type}")
|
datasets/kitti_360/__init__.py
ADDED
File without changes
|
datasets/kitti_360/annotation.py
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#
|
3 |
+
|
4 |
+
from __future__ import print_function, absolute_import, division
|
5 |
+
|
6 |
+
import glob
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import struct
|
10 |
+
import xml.etree.ElementTree as ET
|
11 |
+
from collections import defaultdict
|
12 |
+
from collections import namedtuple
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
from matplotlib import cm
|
16 |
+
from skimage import io, filters
|
17 |
+
|
18 |
+
# get current date and time
|
19 |
+
|
20 |
+
# A point in a polygon
|
21 |
+
Point = namedtuple('Point', ['x', 'y'])
|
22 |
+
|
23 |
+
|
24 |
+
from abc import ABCMeta
|
25 |
+
from datasets.kitti_360.labels import labels, id2label, kittiId2label, name2label
|
26 |
+
|
27 |
+
MAX_N = 1000
|
28 |
+
def local2global(semanticId, instanceId):
|
29 |
+
globalId = semanticId*MAX_N + instanceId
|
30 |
+
if isinstance(globalId, np.ndarray):
|
31 |
+
return globalId.astype(np.int)
|
32 |
+
else:
|
33 |
+
return int(globalId)
|
34 |
+
|
35 |
+
def global2local(globalId):
|
36 |
+
semanticId = globalId // MAX_N
|
37 |
+
instanceId = globalId % MAX_N
|
38 |
+
if isinstance(globalId, np.ndarray):
|
39 |
+
return semanticId.astype(np.int), instanceId.astype(np.int)
|
40 |
+
else:
|
41 |
+
return int(semanticId), int(instanceId)
|
42 |
+
|
43 |
+
annotation2global = defaultdict()
|
44 |
+
|
45 |
+
# Abstract base class for annotation objects
|
46 |
+
class KITTI360Object:
|
47 |
+
__metaclass__ = ABCMeta
|
48 |
+
|
49 |
+
def __init__(self):
|
50 |
+
# the label
|
51 |
+
self.label = ""
|
52 |
+
|
53 |
+
# colormap
|
54 |
+
self.cmap = cm.get_cmap('Set1')
|
55 |
+
self.cmap_length = 9
|
56 |
+
|
57 |
+
def getColor(self, idx):
|
58 |
+
if idx==0:
|
59 |
+
return np.array([0,0,0])
|
60 |
+
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
|
61 |
+
|
62 |
+
def assignColor(self):
|
63 |
+
if self.semanticId>=0:
|
64 |
+
self.semanticColor = id2label[self.semanticId].color
|
65 |
+
if self.instanceId>0:
|
66 |
+
self.instanceColor = self.getColor(self.instanceId)
|
67 |
+
else:
|
68 |
+
self.instanceColor = self.semanticColor
|
69 |
+
|
70 |
+
|
71 |
+
# Class that contains the information of a single annotated object as 3D bounding box
|
72 |
+
class KITTI360Bbox3D(KITTI360Object):
|
73 |
+
# Constructor
|
74 |
+
def __init__(self):
|
75 |
+
KITTI360Object.__init__(self)
|
76 |
+
# the polygon as list of points
|
77 |
+
self.vertices = []
|
78 |
+
self.faces = []
|
79 |
+
self.lines = [[0,5],[1,4],[2,7],[3,6],
|
80 |
+
[0,1],[1,3],[3,2],[2,0],
|
81 |
+
[4,5],[5,7],[7,6],[6,4]]
|
82 |
+
|
83 |
+
# the ID of the corresponding object
|
84 |
+
self.semanticId = -1
|
85 |
+
self.instanceId = -1
|
86 |
+
self.annotationId = -1
|
87 |
+
|
88 |
+
# the window that contains the bbox
|
89 |
+
self.start_frame = -1
|
90 |
+
self.end_frame = -1
|
91 |
+
|
92 |
+
# timestamp of the bbox (-1 if statis)
|
93 |
+
self.timestamp = -1
|
94 |
+
|
95 |
+
# projected vertices
|
96 |
+
self.vertices_proj = None
|
97 |
+
self.meshes = []
|
98 |
+
|
99 |
+
# name
|
100 |
+
self.name = ''
|
101 |
+
|
102 |
+
def __str__(self):
|
103 |
+
return self.name
|
104 |
+
|
105 |
+
def generateMeshes(self):
|
106 |
+
self.meshes = []
|
107 |
+
if self.vertices_proj:
|
108 |
+
for fidx in range(self.faces.shape[0]):
|
109 |
+
self.meshes.append( [ Point(self.vertices_proj[0][int(x)], self.vertices_proj[1][int(x)]) for x in self.faces[fidx]] )
|
110 |
+
|
111 |
+
def parseOpencvMatrix(self, node):
|
112 |
+
rows = int(node.find('rows').text)
|
113 |
+
cols = int(node.find('cols').text)
|
114 |
+
data = node.find('data').text.split(' ')
|
115 |
+
|
116 |
+
mat = []
|
117 |
+
for d in data:
|
118 |
+
d = d.replace('\n', '')
|
119 |
+
if len(d)<1:
|
120 |
+
continue
|
121 |
+
mat.append(float(d))
|
122 |
+
mat = np.reshape(mat, [rows, cols])
|
123 |
+
return mat
|
124 |
+
|
125 |
+
def parseVertices(self, child):
|
126 |
+
transform = self.parseOpencvMatrix(child.find('transform'))
|
127 |
+
R = transform[:3,:3]
|
128 |
+
T = transform[:3,3]
|
129 |
+
vertices = self.parseOpencvMatrix(child.find('vertices'))
|
130 |
+
faces = self.parseOpencvMatrix(child.find('faces'))
|
131 |
+
|
132 |
+
vertices = np.matmul(R, vertices.transpose()).transpose() + T
|
133 |
+
self.vertices = vertices
|
134 |
+
self.faces = faces
|
135 |
+
self.R = R
|
136 |
+
self.T = T
|
137 |
+
|
138 |
+
def parseBbox(self, child):
|
139 |
+
semanticIdKITTI = int(child.find('semanticId').text)
|
140 |
+
self.semanticId = kittiId2label[semanticIdKITTI].id
|
141 |
+
self.instanceId = int(child.find('instanceId').text)
|
142 |
+
self.name = kittiId2label[semanticIdKITTI].name
|
143 |
+
|
144 |
+
self.start_frame = int(child.find('start_frame').text)
|
145 |
+
self.end_frame = int(child.find('end_frame').text)
|
146 |
+
|
147 |
+
self.timestamp = int(child.find('timestamp').text)
|
148 |
+
|
149 |
+
self.annotationId = int(child.find('index').text) + 1
|
150 |
+
|
151 |
+
global annotation2global
|
152 |
+
annotation2global[self.annotationId] = local2global(self.semanticId, self.instanceId)
|
153 |
+
self.parseVertices(child)
|
154 |
+
|
155 |
+
def parseStuff(self, child):
|
156 |
+
classmap = {'driveway': 'parking', 'ground': 'terrain', 'unknownGround': 'ground',
|
157 |
+
'railtrack': 'rail track', 'bigPole': 'pole', 'unknownObject': 'unknown object',
|
158 |
+
'smallPole': 'smallpole', 'trafficSign': 'traffic sign', 'trashbin': 'trash bin',
|
159 |
+
'guardrail': 'guard rail', 'trafficLight': 'traffic light', 'pedestrian': 'person',
|
160 |
+
'vendingmachine': 'vending machine', 'unknownConstruction': 'unknown construction',
|
161 |
+
'unknownVehicle': 'unknown vehicle'}
|
162 |
+
label = child.find('label').text
|
163 |
+
if label in classmap.keys():
|
164 |
+
label = classmap[label]
|
165 |
+
|
166 |
+
self.start_frame = int(child.find('start_frame').text)
|
167 |
+
self.end_frame = int(child.find('end_frame').text)
|
168 |
+
|
169 |
+
self.timestamp = int(child.find('timestamp').text)
|
170 |
+
|
171 |
+
self.semanticId = name2label[label].id
|
172 |
+
self.name = label
|
173 |
+
self.parseVertices(child)
|
174 |
+
|
175 |
+
# Class that contains the information of the point cloud a single frame
|
176 |
+
class KITTI360Point3D(KITTI360Object):
|
177 |
+
# Constructor
|
178 |
+
def __init__(self):
|
179 |
+
KITTI360Object.__init__(self)
|
180 |
+
|
181 |
+
self.vertices = []
|
182 |
+
|
183 |
+
self.vertices_proj = None
|
184 |
+
|
185 |
+
# the ID of the corresponding object
|
186 |
+
self.semanticId = -1
|
187 |
+
self.instanceId = -1
|
188 |
+
self.annotationId = -1
|
189 |
+
|
190 |
+
# name
|
191 |
+
self.name = ''
|
192 |
+
|
193 |
+
# color
|
194 |
+
self.semanticColor = None
|
195 |
+
self.instanceColor = None
|
196 |
+
|
197 |
+
def __str__(self):
|
198 |
+
return self.name
|
199 |
+
|
200 |
+
|
201 |
+
def generateMeshes(self):
|
202 |
+
pass
|
203 |
+
|
204 |
+
|
205 |
+
# The annotation of a whole image, including semantic and instance
|
206 |
+
class Annotation2D:
|
207 |
+
# Constructor
|
208 |
+
def __init__(self, colormap='Set1'):
|
209 |
+
# the width of that image and thus of the label image
|
210 |
+
self.imgWidth = 0
|
211 |
+
# the height of that image and thus of the label image
|
212 |
+
self.imgHeight = 0
|
213 |
+
|
214 |
+
self.instanceId = None
|
215 |
+
self.semanticId = None
|
216 |
+
self.instanceImg = None
|
217 |
+
self.semanticImg = None
|
218 |
+
|
219 |
+
# savedId = semanticId*N + instanceId
|
220 |
+
self.N = 1000
|
221 |
+
|
222 |
+
# colormap
|
223 |
+
self.cmap = cm.get_cmap(colormap)
|
224 |
+
|
225 |
+
if colormap == 'Set1':
|
226 |
+
self.cmap_length = 9
|
227 |
+
else:
|
228 |
+
raise "Colormap length need to be specified!"
|
229 |
+
|
230 |
+
def getColor(self, idx):
|
231 |
+
if idx==0:
|
232 |
+
return np.array([0,0,0])
|
233 |
+
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
|
234 |
+
|
235 |
+
# Load confidence map
|
236 |
+
def loadConfidence(self, imgPath):
|
237 |
+
self.confidenceMap = io.imread(imgPath)
|
238 |
+
self.confidenceMap = np.asarray(self.confidenceMap).astype(np.float)/255.
|
239 |
+
|
240 |
+
# Load instance id
|
241 |
+
def loadInstance(self, imgPath, gtType='instance', toImg=True, contourType='instance', semanticCt=True, instanceCt=True):
|
242 |
+
instanceId = io.imread(imgPath)
|
243 |
+
self.instanceId = np.asarray( instanceId % self.N )
|
244 |
+
self.semanticId = np.asarray( instanceId // self.N )
|
245 |
+
|
246 |
+
if not toImg:
|
247 |
+
return
|
248 |
+
|
249 |
+
if gtType=='semantic':
|
250 |
+
self.toSemanticImage()
|
251 |
+
|
252 |
+
elif gtType=='instance':
|
253 |
+
self.toInstanceImage()
|
254 |
+
|
255 |
+
if semanticCt or instanceCt:
|
256 |
+
self.getBoundary()
|
257 |
+
|
258 |
+
if gtType=='semantic' and semanticCt:
|
259 |
+
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=False)
|
260 |
+
self.semanticImg = self.semanticImg * (1-boundaryImg) + \
|
261 |
+
np.ones_like(self.semanticImg) * boundaryImg * 255
|
262 |
+
|
263 |
+
if gtType=='instance' and instanceCt:
|
264 |
+
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=True)
|
265 |
+
self.instanceImg = self.instanceImg * (1-boundaryImg) + \
|
266 |
+
np.ones_like(self.instanceImg) * boundaryImg * 255
|
267 |
+
|
268 |
+
|
269 |
+
def toSemanticImage(self):
|
270 |
+
self.semanticImg = np.zeros((self.semanticId.size, 3))
|
271 |
+
for label in labels:
|
272 |
+
mask = self.semanticId==label.id
|
273 |
+
mask = mask.flatten()
|
274 |
+
self.semanticImg[mask] = np.asarray(label.color)
|
275 |
+
self.semanticImg = self.semanticImg.reshape(*self.semanticId.shape, 3)
|
276 |
+
|
277 |
+
def toInstanceImage(self):
|
278 |
+
self.instanceImg = np.zeros((self.instanceId.size, 3))
|
279 |
+
|
280 |
+
uniqueId = np.unique(self.instanceId)
|
281 |
+
for uid in uniqueId:
|
282 |
+
mask = self.instanceId==uid
|
283 |
+
mask = mask.flatten()
|
284 |
+
self.instanceImg[mask] = np.asarray(self.getColor(uid))
|
285 |
+
|
286 |
+
self.instanceImg = self.instanceImg.reshape(*self.instanceId.shape, 3)
|
287 |
+
|
288 |
+
def getBoundary(self):
|
289 |
+
# semantic contours
|
290 |
+
uniqueId = np.unique(self.semanticId)
|
291 |
+
self.semanticContours = {}
|
292 |
+
for uid in uniqueId:
|
293 |
+
mask = (self.semanticId==uid).astype(np.uint8) * 255
|
294 |
+
mask_filter = filters.laplace(mask)
|
295 |
+
self.semanticContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
|
296 |
+
|
297 |
+
# instance contours
|
298 |
+
globalId = local2global(self.semanticId, self.instanceId)
|
299 |
+
uniqueId = np.unique(globalId)
|
300 |
+
self.instanceContours = {}
|
301 |
+
for uid in uniqueId:
|
302 |
+
mask = (globalId==uid).astype(np.uint8) * 255
|
303 |
+
mask_filter = filters.laplace(mask)
|
304 |
+
self.instanceContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
|
305 |
+
|
306 |
+
def toBoundaryImage(self, contourType='instance', instanceOnly=True):
|
307 |
+
if contourType=='semantic':
|
308 |
+
contours = self.semanticContours
|
309 |
+
assert(instanceOnly==False)
|
310 |
+
elif contourType=='instance':
|
311 |
+
contours = self.instanceContours
|
312 |
+
else:
|
313 |
+
raise ("Contour type can only be 'semantic' or 'instance'!")
|
314 |
+
|
315 |
+
if not instanceOnly:
|
316 |
+
boundaryImg = [contours[k] for k in contours.keys()]
|
317 |
+
else:
|
318 |
+
boundaryImg = [contours[k] for k in contours.keys() if global2local(k)[1]!=0]
|
319 |
+
boundaryImg = np.sum(np.asarray(boundaryImg), axis=0)
|
320 |
+
boundaryImg = boundaryImg>0
|
321 |
+
return boundaryImg
|
322 |
+
|
323 |
+
|
324 |
+
class Annotation2DInstance:
|
325 |
+
def __init__(self, gtPath, cam=0):
|
326 |
+
|
327 |
+
# trace the instances in all images
|
328 |
+
self.instanceDict = defaultdict(list)
|
329 |
+
|
330 |
+
#
|
331 |
+
instanceDictCached = os.path.join(gtPath, 'instanceDict.json')
|
332 |
+
print(instanceDictCached)
|
333 |
+
if os.path.isfile(instanceDictCached) and os.path.getsize(instanceDictCached)>0:
|
334 |
+
cachedDict = json.load( open(instanceDictCached) )
|
335 |
+
for k,v in cachedDict.items():
|
336 |
+
self.instanceDict[int(k)] = v
|
337 |
+
return
|
338 |
+
|
339 |
+
obj = Annotation2D()
|
340 |
+
|
341 |
+
gtPaths = glob.glob( os.path.join(gtPath, 'instance', '*.png') )
|
342 |
+
print (f'Found {len(gtPaths)} label images...')
|
343 |
+
|
344 |
+
for i,imgPath in enumerate(gtPaths):
|
345 |
+
if i%1000==0:
|
346 |
+
print(f'Processed {i}/{len(gtPaths)} label images...')
|
347 |
+
obj.loadInstance(imgPath, toImg=False)
|
348 |
+
globalId = local2global(obj.semanticId, obj.instanceId)
|
349 |
+
globalIdUnique = np.unique(globalId)
|
350 |
+
for idx in globalIdUnique:
|
351 |
+
self.instanceDict[int(idx)].append(os.path.basename(imgPath))
|
352 |
+
|
353 |
+
json.dump( self.instanceDict, open(instanceDictCached, 'w'))
|
354 |
+
|
355 |
+
# returns the paths that contains the specific instance
|
356 |
+
def __call__(self, semanticId, instanceId):
|
357 |
+
globalId = local2global(semanticId, instanceId)
|
358 |
+
return self.instanceDict[globalId]
|
359 |
+
|
360 |
+
# Meta class for KITTI360Bbox3D
|
361 |
+
class Annotation3D:
|
362 |
+
# Constructor
|
363 |
+
def __init__(self, labelDir='', sequence=''):
|
364 |
+
|
365 |
+
labelPath = glob.glob(os.path.join(labelDir, '*', '%s.xml' % sequence)) # train or test
|
366 |
+
if len(labelPath)!=1:
|
367 |
+
raise RuntimeError('%s does not exist! Please specify KITTI360_DATASET in your environment path.' % labelPath)
|
368 |
+
else:
|
369 |
+
labelPath = labelPath[0]
|
370 |
+
print('Loading %s...' % labelPath)
|
371 |
+
|
372 |
+
self.init_instance(labelPath)
|
373 |
+
|
374 |
+
def init_instance(self, labelPath):
|
375 |
+
# load annotation
|
376 |
+
tree = ET.parse(labelPath)
|
377 |
+
root = tree.getroot()
|
378 |
+
|
379 |
+
self.objects = defaultdict(dict)
|
380 |
+
|
381 |
+
self.num_bbox = 0
|
382 |
+
|
383 |
+
for child in root:
|
384 |
+
if child.find('transform') is None:
|
385 |
+
continue
|
386 |
+
obj = KITTI360Bbox3D()
|
387 |
+
obj.parseBbox(child)
|
388 |
+
globalId = local2global(obj.semanticId, obj.instanceId)
|
389 |
+
self.objects[globalId][obj.timestamp] = obj
|
390 |
+
self.num_bbox+=1
|
391 |
+
|
392 |
+
globalIds = np.asarray(list(self.objects.keys()))
|
393 |
+
semanticIds, instanceIds = global2local(globalIds)
|
394 |
+
for label in labels:
|
395 |
+
if label.hasInstances:
|
396 |
+
print(f'{label.name:<30}:\t {(semanticIds==label.id).sum()}')
|
397 |
+
print(f'Loaded {len(globalIds)} instances')
|
398 |
+
print(f'Loaded {self.num_bbox} boxes')
|
399 |
+
|
400 |
+
|
401 |
+
def __call__(self, semanticId, instanceId, timestamp=None):
|
402 |
+
globalId = local2global(semanticId, instanceId)
|
403 |
+
if globalId in self.objects.keys():
|
404 |
+
# static object
|
405 |
+
if len(self.objects[globalId].keys())==1:
|
406 |
+
if -1 in self.objects[globalId].keys():
|
407 |
+
return self.objects[globalId][-1]
|
408 |
+
else:
|
409 |
+
return None
|
410 |
+
# dynamic object
|
411 |
+
else:
|
412 |
+
return self.objects[globalId][timestamp]
|
413 |
+
else:
|
414 |
+
return None
|
415 |
+
|
416 |
+
class Annotation3DPly:
|
417 |
+
# parse fused 3D point cloud
|
418 |
+
def __init__(self, labelDir='', sequence='', isLabeled=True, isDynamic=False, showStatic=True):
|
419 |
+
|
420 |
+
if isLabeled and not isDynamic:
|
421 |
+
# x y z r g b semanticId instanceId isVisible confidence
|
422 |
+
self.fmt = '=fffBBBiiBf'
|
423 |
+
self.fmt_len = 28
|
424 |
+
elif isLabeled and isDynamic:
|
425 |
+
# x y z r g b semanticId instanceId isVisible timestamp confidence
|
426 |
+
self.fmt = '=fffBBBiiBif'
|
427 |
+
self.fmt_len = 32
|
428 |
+
elif not isLabeled and not isDynamic:
|
429 |
+
# x y z r g b
|
430 |
+
self.fmt = '=fffBBBB'
|
431 |
+
self.fmt_len = 16
|
432 |
+
else:
|
433 |
+
raise RuntimeError('Invalid binary format!')
|
434 |
+
|
435 |
+
# True for training data, False for testing data
|
436 |
+
self.isLabeled = isLabeled
|
437 |
+
# True for dynamic data, False for static data
|
438 |
+
self.isDynamic = isDynamic
|
439 |
+
# True for inspecting static data, False for inspecting dynamic data
|
440 |
+
self.showStatic = showStatic
|
441 |
+
|
442 |
+
pcdFolder = 'static' if self.showStatic else 'dynamic'
|
443 |
+
trainTestDir = 'train' if self.isLabeled else 'test'
|
444 |
+
self.pcdFileList = sorted(glob.glob(os.path.join(labelDir, trainTestDir, sequence, pcdFolder, '*.ply')))
|
445 |
+
|
446 |
+
print('Found %d ply files in %s' % (len(self.pcdFileList), sequence))
|
447 |
+
|
448 |
+
def readBinaryPly(self, pcdFile, n_pts=None):
|
449 |
+
|
450 |
+
with open(pcdFile, 'rb') as f:
|
451 |
+
plyData = f.readlines()
|
452 |
+
|
453 |
+
headLine = plyData.index(b'end_header\n')+1
|
454 |
+
plyData = plyData[headLine:]
|
455 |
+
plyData = b"".join(plyData)
|
456 |
+
|
457 |
+
n_pts_loaded = len(plyData)/self.fmt_len
|
458 |
+
# sanity check
|
459 |
+
if n_pts:
|
460 |
+
assert(n_pts_loaded==n_pts)
|
461 |
+
n_pts_loaded = int(n_pts_loaded)
|
462 |
+
|
463 |
+
data = []
|
464 |
+
for i in range(n_pts_loaded):
|
465 |
+
pts=struct.unpack(self.fmt, plyData[i*self.fmt_len:(i+1)*self.fmt_len])
|
466 |
+
data.append(pts)
|
467 |
+
data=np.asarray(data)
|
468 |
+
|
469 |
+
return data
|
470 |
+
|
471 |
+
def writeBinaryPly(self, pcdFile, data):
|
472 |
+
fmt = '=fffBBBiiB'
|
473 |
+
fmt_len = 24
|
474 |
+
n_pts = data.shape[0]
|
475 |
+
|
476 |
+
with open(pcdFile, 'wb') as f:
|
477 |
+
f.write(b'ply\n')
|
478 |
+
f.write(b'format binary_little_endian 1.0\n')
|
479 |
+
f.write(b'comment author Yiyi Liao\n')
|
480 |
+
f.write(b'element vertex %d\n' % n_pts)
|
481 |
+
f.write(b'property float x\n')
|
482 |
+
f.write(b'property float y\n')
|
483 |
+
f.write(b'property float z\n')
|
484 |
+
f.write(b'property uchar red\n')
|
485 |
+
f.write(b'property uchar green\n')
|
486 |
+
f.write(b'property uchar blue\n')
|
487 |
+
f.write(b'property int semantic\n')
|
488 |
+
|
489 |
+
|
490 |
+
class Annotation3DInstance(object):
|
491 |
+
instance_id = 0
|
492 |
+
labelId = 0
|
493 |
+
vert_count = 0
|
494 |
+
med_dist = -1
|
495 |
+
dist_conf = 0.0
|
496 |
+
|
497 |
+
def __init__(self, mesh_vert_instances, instance_id):
|
498 |
+
if (instance_id == -1):
|
499 |
+
return
|
500 |
+
self.instance_id = int(instance_id)
|
501 |
+
self.labelId = int(self.get_labelId(instance_id))
|
502 |
+
self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id))
|
503 |
+
|
504 |
+
def get_labelId(self, instance_id):
|
505 |
+
return int(instance_id // 1000)
|
506 |
+
|
507 |
+
def get_instance_verts(self, mesh_vert_instances, instance_id):
|
508 |
+
return (mesh_vert_instances == instance_id).sum()
|
509 |
+
|
510 |
+
def to_json(self):
|
511 |
+
return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
|
512 |
+
|
513 |
+
def to_dict(self):
|
514 |
+
dict = {}
|
515 |
+
dict["instance_id"] = self.instance_id
|
516 |
+
dict["labelId"] = self.labelId
|
517 |
+
dict["vert_count"] = self.vert_count
|
518 |
+
dict["med_dist"] = self.med_dist
|
519 |
+
dict["dist_conf"] = self.dist_conf
|
520 |
+
return dict
|
521 |
+
|
522 |
+
def from_json(self, data):
|
523 |
+
self.instance_id = int(data["instance_id"])
|
524 |
+
self.labelId = int(data["labelId"])
|
525 |
+
self.vert_count = int(data["vert_count"])
|
526 |
+
if ("med_dist" in data):
|
527 |
+
self.med_dist = float(data["med_dist"])
|
528 |
+
self.dist_conf = float(data["dist_conf"])
|
529 |
+
|
530 |
+
def __str__(self):
|
531 |
+
return "("+str(self.instance_id)+")"
|
532 |
+
|
533 |
+
# a dummy example
|
534 |
+
if __name__ == "__main__":
|
535 |
+
|
536 |
+
ann = Annotation3D()
|
537 |
+
|
538 |
+
|
datasets/kitti_360/compute_kitti_360_bbox_split.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
DRY_RUN = False
|
6 |
+
|
7 |
+
CUT = [7, 9, 10, 15, 19, 31, 43, 69, 87, 107, 118, 154, 156, 167, 168, 170, 171, 172, 173, 174, 178, 179, 180, 181,
|
8 |
+
182, 183, 184, 185, 187, 188, 193, 194, 195, 196, 201, 202, 203, 209, 210, 212, 213, 214, 215, 216, 217, 218,
|
9 |
+
219, 220, 221, 222, 224, 225, 226, 229, 230, 231, 234, 235, 236, 237, 238, 256, 257, 258, 267, 278, 283, 293,
|
10 |
+
294, 295, 296, 297, 298, 299, 310, 315, 317, 318, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333,
|
11 |
+
334, 335, 336, 337, 340, 341, 349, 353, 354, 361, 362, 365, 366, 368, 371, 372, 376, 380, 386, 387, 394, 402,
|
12 |
+
403, 404, 411, 414, 415, 416, 420, 438, 441, 448, 452, 456, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482,
|
13 |
+
484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 519, 520, 554, 562, 593, 594,
|
14 |
+
596]
|
15 |
+
|
16 |
+
|
17 |
+
def check_integrity(data_path, seq, img_id):
|
18 |
+
persp = data_path / "data_2d_raw" / seq / "image_00" / "data_rect" / f"{img_id:010d}.png"
|
19 |
+
fish = data_path / "data_2d_raw" / seq / "image_02" / "data_rgb" / f"{img_id:010d}.png"
|
20 |
+
|
21 |
+
return fish.exists() and persp.exists()
|
22 |
+
|
23 |
+
|
24 |
+
def main():
|
25 |
+
parser = argparse.ArgumentParser("KITTI Raw NVS Split")
|
26 |
+
parser.add_argument("--data_path", "-d", type=str)
|
27 |
+
parser.add_argument("--out_path", "-o", type=str)
|
28 |
+
parser.add_argument("--offset", type=int, default=20)
|
29 |
+
|
30 |
+
args = parser.parse_args()
|
31 |
+
|
32 |
+
data_path = Path(args.data_path)
|
33 |
+
out_path = Path(args.out_path)
|
34 |
+
offset = args.offset
|
35 |
+
|
36 |
+
print("Setting up folders...")
|
37 |
+
Path(out_path).mkdir(parents=True, exist_ok=True)
|
38 |
+
|
39 |
+
segmentation_train_file = data_path / "data_2d_semantics" / "train" / "2013_05_28_drive_train_frames.txt"
|
40 |
+
segmentation_val_file = data_path / "data_2d_semantics" / "train" / "2013_05_28_drive_val_frames.txt"
|
41 |
+
|
42 |
+
with open(segmentation_train_file, "r") as f:
|
43 |
+
train_lines = f.readlines()
|
44 |
+
with open(segmentation_val_file, "r") as f:
|
45 |
+
val_lines = f.readlines()
|
46 |
+
|
47 |
+
train_files = []
|
48 |
+
val_files = []
|
49 |
+
test_files = []
|
50 |
+
|
51 |
+
invalid = 0
|
52 |
+
|
53 |
+
for i in range(len(train_lines)):
|
54 |
+
parts = train_lines[i].split(" ")
|
55 |
+
img_path = parts[0]
|
56 |
+
|
57 |
+
parts = img_path.split("/")
|
58 |
+
sequence = parts[1]
|
59 |
+
img_id = int(parts[-1][-14:-4])
|
60 |
+
|
61 |
+
if not check_integrity(data_path, sequence, img_id):
|
62 |
+
invalid += 1
|
63 |
+
continue
|
64 |
+
|
65 |
+
train_files.append(f"{sequence} {img_id:010d} l")
|
66 |
+
train_files.append(f"{sequence} {img_id:010d} r")
|
67 |
+
|
68 |
+
for i in range(0, len(val_lines)):
|
69 |
+
parts = val_lines[i].split(" ")
|
70 |
+
img_path = parts[0]
|
71 |
+
seg_path = parts[1][:-1]
|
72 |
+
|
73 |
+
parts = img_path.split("/")
|
74 |
+
sequence = parts[1]
|
75 |
+
img_id = int(parts[-1][-14:-4])
|
76 |
+
|
77 |
+
is_test = (i % offset) == 0
|
78 |
+
|
79 |
+
if not check_integrity(data_path, sequence, img_id):
|
80 |
+
invalid += 1
|
81 |
+
continue
|
82 |
+
|
83 |
+
if not is_test:
|
84 |
+
val_files.append(f"{sequence} {img_id:010d} l")
|
85 |
+
else:
|
86 |
+
test_files.append(f"{sequence} {img_id:010d} l")
|
87 |
+
|
88 |
+
print(f"Found: Train={len(train_files)}, Val={len(val_files)}, Test={len(test_files)} test files.")
|
89 |
+
print(f"Found: {invalid} invalids.")
|
90 |
+
|
91 |
+
test_files = [s for i, s in enumerate(test_files) if not i in CUT]
|
92 |
+
|
93 |
+
print(f"{len(CUT)} test files removed. {len(test_files)} remaining.")
|
94 |
+
|
95 |
+
train_file = out_path / f"train_files.txt"
|
96 |
+
val_file = out_path / f"val_files.txt"
|
97 |
+
test_file = out_path / f"test_files.txt"
|
98 |
+
|
99 |
+
with open(train_file, "w") as f:
|
100 |
+
f.writelines("\n".join(train_files))
|
101 |
+
|
102 |
+
with open(val_file, "w") as f:
|
103 |
+
f.writelines("\n".join(val_files))
|
104 |
+
|
105 |
+
with open(test_file, "w") as f:
|
106 |
+
f.writelines("\n".join(test_files))
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|
datasets/kitti_360/kitti_360_dataset.py
ADDED
@@ -0,0 +1,1263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import xml.etree.ElementTree as ET
|
4 |
+
from collections import Counter, defaultdict
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import yaml
|
13 |
+
from scipy.spatial.transform import Rotation
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from torchvision.transforms import ColorJitter
|
16 |
+
|
17 |
+
from datasets.kitti_360.annotation import KITTI360Bbox3D
|
18 |
+
from scenedino.common.augmentation import get_color_aug_fn
|
19 |
+
|
20 |
+
import omegaconf
|
21 |
+
|
22 |
+
|
23 |
+
class FisheyeToPinholeSampler:
|
24 |
+
def __init__(self, K_target, target_image_size, calibs, rotation=None):
|
25 |
+
self._compute_transform(K_target, target_image_size, calibs, rotation)
|
26 |
+
|
27 |
+
def _compute_transform(self, K_target, target_image_size, calibs, rotation=None):
|
28 |
+
x = (
|
29 |
+
torch.linspace(-1, 1, target_image_size[1])
|
30 |
+
.view(1, -1)
|
31 |
+
.expand(target_image_size)
|
32 |
+
)
|
33 |
+
y = (
|
34 |
+
torch.linspace(-1, 1, target_image_size[0])
|
35 |
+
.view(-1, 1)
|
36 |
+
.expand(target_image_size)
|
37 |
+
)
|
38 |
+
z = torch.ones_like(x)
|
39 |
+
xyz = torch.stack((x, y, z), dim=-1).view(-1, 3)
|
40 |
+
|
41 |
+
# Unproject
|
42 |
+
xyz = (torch.inverse(torch.tensor(K_target)) @ xyz.T).T
|
43 |
+
|
44 |
+
if rotation is not None:
|
45 |
+
xyz = (torch.tensor(rotation) @ xyz.T).T
|
46 |
+
|
47 |
+
# Backproject into fisheye
|
48 |
+
xyz = xyz / torch.norm(xyz, dim=-1, keepdim=True)
|
49 |
+
x = xyz[:, 0]
|
50 |
+
y = xyz[:, 1]
|
51 |
+
z = xyz[:, 2]
|
52 |
+
|
53 |
+
xi_src = calibs["mirror_parameters"]["xi"]
|
54 |
+
x = x / (z + xi_src)
|
55 |
+
y = y / (z + xi_src)
|
56 |
+
|
57 |
+
k1 = calibs["distortion_parameters"]["k1"]
|
58 |
+
k2 = calibs["distortion_parameters"]["k2"]
|
59 |
+
|
60 |
+
r = x * x + y * y
|
61 |
+
factor = 1 + k1 * r + k2 * r * r
|
62 |
+
x = x * factor
|
63 |
+
y = y * factor
|
64 |
+
|
65 |
+
gamma0 = calibs["projection_parameters"]["gamma1"]
|
66 |
+
gamma1 = calibs["projection_parameters"]["gamma2"]
|
67 |
+
u0 = calibs["projection_parameters"]["u0"]
|
68 |
+
v0 = calibs["projection_parameters"]["v0"]
|
69 |
+
|
70 |
+
x = x * gamma0 + u0
|
71 |
+
y = y * gamma1 + v0
|
72 |
+
|
73 |
+
xy = torch.stack((x, y), dim=-1).view(1, *target_image_size, 2)
|
74 |
+
self.sample_pts = xy
|
75 |
+
|
76 |
+
def resample(self, img):
|
77 |
+
img = img.unsqueeze(0)
|
78 |
+
resampled_img = F.grid_sample(img, self.sample_pts, align_corners=True).squeeze(
|
79 |
+
0
|
80 |
+
)
|
81 |
+
return resampled_img
|
82 |
+
|
83 |
+
|
84 |
+
# TODO: probably move to KITTI-360 dataset
|
85 |
+
# The KITTI 360 cameras have a 5 degrees negative inclination. We need to account for that.
|
86 |
+
cam_incl_adjust = torch.tensor(
|
87 |
+
[
|
88 |
+
[1.0000000, 0.0000000, 0.0000000, 0],
|
89 |
+
[0.0000000, 0.9961947, 0.0871557, 0],
|
90 |
+
[0.0000000, -0.0871557, 0.9961947, 0],
|
91 |
+
[0.0000000, 000000000, 0.0000000, 1],
|
92 |
+
],
|
93 |
+
dtype=torch.float32,
|
94 |
+
).view(1, 1, 4, 4)
|
95 |
+
|
96 |
+
|
97 |
+
def get_pts(x_range, y_range, z_range, ppm, ppm_y, y_res=None): ## ppm:=pts_per_meter
|
98 |
+
x_res = abs(int((x_range[1] - x_range[0]) * ppm))
|
99 |
+
if y_res is None:
|
100 |
+
y_res = abs(int((y_range[1] - y_range[0]) * ppm_y))
|
101 |
+
z_res = abs(int((z_range[1] - z_range[0]) * ppm))
|
102 |
+
x = (
|
103 |
+
torch.linspace(x_range[0], x_range[1], x_res)
|
104 |
+
.view(1, 1, x_res)
|
105 |
+
.expand(y_res, z_res, -1)
|
106 |
+
)
|
107 |
+
z = (
|
108 |
+
torch.linspace(z_range[0], z_range[1], z_res)
|
109 |
+
.view(1, z_res, 1)
|
110 |
+
.expand(y_res, -1, x_res)
|
111 |
+
)
|
112 |
+
if y_res == 1:
|
113 |
+
y = (
|
114 |
+
torch.tensor([y_range[0] * 0.5 + y_range[1] * 0.5])
|
115 |
+
.view(y_res, 1, 1)
|
116 |
+
.expand(-1, z_res, x_res)
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
y = (
|
120 |
+
torch.linspace(y_range[0], y_range[1], y_res)
|
121 |
+
.view(y_res, 1, 1)
|
122 |
+
.expand(-1, z_res, x_res)
|
123 |
+
)
|
124 |
+
xyz = torch.stack((x, y, z), dim=-1)
|
125 |
+
|
126 |
+
return xyz, (x_res, y_res, z_res)
|
127 |
+
|
128 |
+
|
129 |
+
# This function takes all points between min_y and max_y and projects them into the x-z plane.
|
130 |
+
# To avoid cases where there are no points at the top end, we consider also points that are beyond the maximum z distance.
|
131 |
+
# The points are then converted to polar coordinates and sorted by angle.
|
132 |
+
|
133 |
+
|
134 |
+
def get_lidar_slices(point_clouds, velo_poses, y_range, y_res, max_dist):
|
135 |
+
slices = []
|
136 |
+
ys = torch.linspace(y_range[0], y_range[1], y_res)
|
137 |
+
if y_res > 1:
|
138 |
+
slice_height = ys[1] - ys[0]
|
139 |
+
else:
|
140 |
+
slice_height = 0
|
141 |
+
n_bins = 360
|
142 |
+
|
143 |
+
for y in ys:
|
144 |
+
if y_res == 1:
|
145 |
+
min_y = y
|
146 |
+
max_y = y_range[-1]
|
147 |
+
else:
|
148 |
+
min_y = y - slice_height / 2
|
149 |
+
max_y = y + slice_height / 2
|
150 |
+
|
151 |
+
slice = []
|
152 |
+
|
153 |
+
for pc, velo_pose in zip(point_clouds, velo_poses):
|
154 |
+
pc_world = (velo_pose @ pc.T).T
|
155 |
+
|
156 |
+
mask = ((pc_world[:, 1] >= min_y) & (pc_world[:, 1] <= max_y)) | (
|
157 |
+
torch.norm(pc_world[:, :3], dim=-1) >= max_dist
|
158 |
+
)
|
159 |
+
|
160 |
+
slice_points = pc[mask, :2]
|
161 |
+
|
162 |
+
angles = torch.atan2(slice_points[:, 1], slice_points[:, 0])
|
163 |
+
dists = torch.norm(slice_points, dim=-1)
|
164 |
+
|
165 |
+
slice_points_polar = torch.stack((angles, dists), dim=1)
|
166 |
+
# Sort by angles for fast lookup
|
167 |
+
slice_points_polar = slice_points_polar[torch.sort(angles)[1], :]
|
168 |
+
|
169 |
+
slice_points_polar_binned = torch.zeros_like(slice_points_polar[:n_bins, :])
|
170 |
+
bin_borders = torch.linspace(
|
171 |
+
-math.pi, math.pi, n_bins + 1, device=slice_points_polar.device
|
172 |
+
)
|
173 |
+
|
174 |
+
dist = slice_points_polar[0, 1]
|
175 |
+
|
176 |
+
# To reduce noise, we bin the lidar points into bins of 1deg and then take the minimum distance per bin.
|
177 |
+
border_is = torch.searchsorted(slice_points_polar[:, 0], bin_borders)
|
178 |
+
|
179 |
+
for i in range(n_bins):
|
180 |
+
left_i, right_i = border_is[i], border_is[i + 1]
|
181 |
+
angle = (bin_borders[i] + bin_borders[i + 1]) * 0.5
|
182 |
+
if right_i > left_i:
|
183 |
+
dist = torch.min(slice_points_polar[left_i:right_i, 1])
|
184 |
+
slice_points_polar_binned[i, 0] = angle
|
185 |
+
slice_points_polar_binned[i, 1] = dist
|
186 |
+
|
187 |
+
slice_points_polar = slice_points_polar_binned
|
188 |
+
|
189 |
+
# Append first element to last to have full 360deg coverage
|
190 |
+
slice_points_polar = torch.cat(
|
191 |
+
(
|
192 |
+
torch.tensor(
|
193 |
+
[
|
194 |
+
[
|
195 |
+
slice_points_polar[-1, 0] - math.pi * 2,
|
196 |
+
slice_points_polar[-1, 1],
|
197 |
+
]
|
198 |
+
],
|
199 |
+
device=slice_points_polar.device,
|
200 |
+
),
|
201 |
+
slice_points_polar,
|
202 |
+
torch.tensor(
|
203 |
+
[
|
204 |
+
[
|
205 |
+
slice_points_polar[0, 0] + math.pi * 2,
|
206 |
+
slice_points_polar[0, 1],
|
207 |
+
]
|
208 |
+
],
|
209 |
+
device=slice_points_polar.device,
|
210 |
+
),
|
211 |
+
),
|
212 |
+
dim=0,
|
213 |
+
)
|
214 |
+
|
215 |
+
slice.append(slice_points_polar)
|
216 |
+
|
217 |
+
slices.append(slice)
|
218 |
+
|
219 |
+
return slices
|
220 |
+
|
221 |
+
|
222 |
+
def check_occupancy(pts, slices, velo_poses, min_dist=3):
|
223 |
+
is_occupied = torch.ones_like(pts[:, 0])
|
224 |
+
is_visible = torch.zeros_like(pts[:, 0], dtype=torch.bool)
|
225 |
+
|
226 |
+
thresh = (len(slices[0]) - 2) / len(slices[0])
|
227 |
+
|
228 |
+
pts = torch.cat((pts, torch.ones_like(pts[:, :1])), dim=-1)
|
229 |
+
|
230 |
+
world_to_velos = torch.inverse(velo_poses)
|
231 |
+
|
232 |
+
step = pts.shape[0] // len(slices)
|
233 |
+
|
234 |
+
for i, slice in enumerate(slices):
|
235 |
+
for j, (lidar_polar, world_to_velo) in enumerate(zip(slice, world_to_velos)):
|
236 |
+
pts_velo = (world_to_velo @ pts[i * step : (i + 1) * step, :].T).T
|
237 |
+
|
238 |
+
# Convert query points to polar coordinates in velo space
|
239 |
+
angles = torch.atan2(pts_velo[:, 1], pts_velo[:, 0])
|
240 |
+
dists = torch.norm(pts_velo, dim=-1)
|
241 |
+
|
242 |
+
indices = torch.searchsorted(lidar_polar[:, 0].contiguous(), angles)
|
243 |
+
|
244 |
+
left_angles = lidar_polar[indices - 1, 0]
|
245 |
+
right_angles = lidar_polar[indices, 0]
|
246 |
+
|
247 |
+
left_dists = lidar_polar[indices - 1, 1]
|
248 |
+
right_dists = lidar_polar[indices, 1]
|
249 |
+
|
250 |
+
interp = (angles - left_angles) / (right_angles - left_angles)
|
251 |
+
surface_dist = left_dists * (1 - interp) + right_dists * interp
|
252 |
+
|
253 |
+
is_occupied_velo = (dists > surface_dist) | (dists < min_dist)
|
254 |
+
|
255 |
+
is_occupied[i * step : (i + 1) * step] += is_occupied_velo.float()
|
256 |
+
|
257 |
+
if j == 0:
|
258 |
+
is_visible[i * step : (i + 1) * step] |= ~is_occupied_velo
|
259 |
+
|
260 |
+
is_occupied /= len(slices[0])
|
261 |
+
|
262 |
+
is_occupied = is_occupied > thresh
|
263 |
+
|
264 |
+
return is_occupied, is_visible
|
265 |
+
|
266 |
+
|
267 |
+
class KITTIVelodyn:
|
268 |
+
def __init__(self, config) -> None:
|
269 |
+
self.config = config
|
270 |
+
self.occ_pts, self.yd = self._gen_pts()
|
271 |
+
|
272 |
+
def _gen_pts(self) -> torch.Tensor:
|
273 |
+
q_pts, (xd, yd, zd) = get_pts(
|
274 |
+
self.x_range, self.y_range, self.z_range, self.ppm, self.ppm_y, self.y_res
|
275 |
+
)
|
276 |
+
return q_pts, yd
|
277 |
+
|
278 |
+
def check_occupancy(self, points_all, velo_poses):
|
279 |
+
slices = get_lidar_slices(
|
280 |
+
points_all,
|
281 |
+
velo_poses,
|
282 |
+
self.config["y_range"],
|
283 |
+
self.yd,
|
284 |
+
(self.self.config["z_range"][0] ** 2 + self.self.config["x_range"][0] ** 2)
|
285 |
+
** 0.5,
|
286 |
+
)
|
287 |
+
is_occupied, is_visible = check_occupancy(self.occ_pts, slices, velo_poses)
|
288 |
+
|
289 |
+
return is_occupied, is_visible
|
290 |
+
|
291 |
+
|
292 |
+
class Kitti360Dataset(Dataset):
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
data_path: str,
|
296 |
+
pose_path: str,
|
297 |
+
split_path: Optional[str],
|
298 |
+
target_image_size=(192, 640),
|
299 |
+
return_stereo=False,
|
300 |
+
return_depth=False,
|
301 |
+
return_fisheye=True, ## default: True
|
302 |
+
return_3d_bboxes=False,
|
303 |
+
return_segmentation=False,
|
304 |
+
frame_count=2,
|
305 |
+
keyframe_offset=0,
|
306 |
+
dilation=1,
|
307 |
+
fisheye_rotation=0,
|
308 |
+
fisheye_offset=0,
|
309 |
+
stereo_offset=0,
|
310 |
+
eigen_depth=True,
|
311 |
+
color_aug=False,
|
312 |
+
is_preprocessed=False,
|
313 |
+
kitti_velodyn: KITTIVelodyn | None = None,
|
314 |
+
):
|
315 |
+
self.data_path = data_path
|
316 |
+
self.pose_path = pose_path
|
317 |
+
self.split_path = split_path
|
318 |
+
self.target_image_size = target_image_size
|
319 |
+
self.return_stereo = return_stereo
|
320 |
+
self.return_fisheye = return_fisheye
|
321 |
+
self.return_depth = return_depth
|
322 |
+
self.return_3d_bboxes = return_3d_bboxes
|
323 |
+
self.return_segmentation = return_segmentation
|
324 |
+
self.frame_count = frame_count
|
325 |
+
self.dilation = dilation
|
326 |
+
self.fisheye_rotation = fisheye_rotation
|
327 |
+
self.fisheye_offset = fisheye_offset
|
328 |
+
self.stereo_offset = stereo_offset
|
329 |
+
self.keyframe_offset = keyframe_offset
|
330 |
+
self.eigen_depth = eigen_depth
|
331 |
+
self.color_aug = color_aug
|
332 |
+
self.is_preprocessed = is_preprocessed
|
333 |
+
self.kitti_velodyn = kitti_velodyn
|
334 |
+
|
335 |
+
if isinstance(self.fisheye_rotation, float) or isinstance(
|
336 |
+
self.fisheye_rotation, int
|
337 |
+
):
|
338 |
+
self.fisheye_rotation = (0, self.fisheye_rotation)
|
339 |
+
self.fisheye_rotation = tuple(self.fisheye_rotation)
|
340 |
+
|
341 |
+
# if additional_random_front_offset and not self.random_fisheye_offset:
|
342 |
+
# raise ValueError("Random Fisheye Offset needs to be active for additional random front offset!")
|
343 |
+
# else:
|
344 |
+
# self.additional_random_front_offset = additional_random_front_offset
|
345 |
+
|
346 |
+
# Support random fisheye offset
|
347 |
+
if type(self.fisheye_offset) == int:
|
348 |
+
self.random_fisheye_offset = False
|
349 |
+
self.fisheye_offset = (self.fisheye_offset,)
|
350 |
+
elif type(self.fisheye_offset) in [
|
351 |
+
tuple,
|
352 |
+
list,
|
353 |
+
omegaconf.listconfig.ListConfig,
|
354 |
+
]:
|
355 |
+
self.random_fisheye_offset = True
|
356 |
+
self.fisheye_offset = tuple(sorted(self.fisheye_offset))
|
357 |
+
else:
|
358 |
+
raise ValueError(
|
359 |
+
f"Invalid datatype for fisheye offset: {type(self.fisheye_offset)}"
|
360 |
+
)
|
361 |
+
|
362 |
+
if type(self.stereo_offset) == int:
|
363 |
+
self.random_stereo_offset = False
|
364 |
+
self.stereo_offset = (self.stereo_offset,)
|
365 |
+
elif type(self.stereo_offset) in [tuple, list, omegaconf.listconfig.ListConfig]:
|
366 |
+
self.random_stereo_offset = True
|
367 |
+
self.stereo_offset = tuple(sorted(self.stereo_offset))
|
368 |
+
else:
|
369 |
+
raise ValueError(
|
370 |
+
f"Invalid datatype for fisheye offset: {type(self.stereo_offset)}"
|
371 |
+
)
|
372 |
+
|
373 |
+
self._sequences = self._get_sequences(self.data_path)
|
374 |
+
|
375 |
+
self._calibs = self._load_calibs(self.data_path, self.fisheye_rotation)
|
376 |
+
self._resampler_02, self._resampler_03 = self._get_resamplers(
|
377 |
+
self._calibs, self._calibs["K_fisheye"], self.target_image_size
|
378 |
+
)
|
379 |
+
self._img_ids, self._poses = self._load_poses(self.pose_path, self._sequences)
|
380 |
+
self._left_offset = (
|
381 |
+
(self.frame_count - 1) // 2 + self.keyframe_offset
|
382 |
+
) * self.dilation
|
383 |
+
|
384 |
+
self._perspective_folder = (
|
385 |
+
"data_rect"
|
386 |
+
if not self.is_preprocessed
|
387 |
+
else f"data_{self.target_image_size[0]}x{self.target_image_size[1]}"
|
388 |
+
)
|
389 |
+
self._fisheye_folder = (
|
390 |
+
"data_rgb"
|
391 |
+
if not self.is_preprocessed
|
392 |
+
else f"data_{self.target_image_size[0]}x{self.target_image_size[1]}_{self.fisheye_rotation[0]}x{self.fisheye_rotation[1]}"
|
393 |
+
)
|
394 |
+
|
395 |
+
if self.split_path is not None:
|
396 |
+
self._datapoints = self._load_split(self.split_path, self._img_ids)
|
397 |
+
elif self.return_segmentation:
|
398 |
+
self._datapoints = self._semantics_split(
|
399 |
+
self._sequences, self.data_path, self._img_ids
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
self._datapoints = self._full_split(
|
403 |
+
self._sequences, self._img_ids, self.check_file_integrity
|
404 |
+
)
|
405 |
+
|
406 |
+
if self.return_3d_bboxes:
|
407 |
+
self._3d_bboxes = self._load_3d_bboxes(
|
408 |
+
Path(data_path) / "data_3d_bboxes" / "train_full", self._sequences
|
409 |
+
)
|
410 |
+
|
411 |
+
if self.return_segmentation:
|
412 |
+
# Segmentations are only provided for the left camera
|
413 |
+
self._datapoints = [dp for dp in self._datapoints if not dp[2]]
|
414 |
+
|
415 |
+
self._skip = 0
|
416 |
+
self.length = len(self._datapoints)
|
417 |
+
|
418 |
+
def check_file_integrity(self, seq, id):
|
419 |
+
dp = Path(self.data_path)
|
420 |
+
image_00 = dp / "data_2d_raw" / seq / "image_00" / self._perspective_folder
|
421 |
+
image_01 = dp / "data_2d_raw" / seq / "image_01" / self._perspective_folder
|
422 |
+
image_02 = dp / "data_2d_raw" / seq / "image_02" / self._fisheye_folder
|
423 |
+
image_03 = dp / "data_2d_raw" / seq / "image_03" / self._fisheye_folder
|
424 |
+
|
425 |
+
seq_len = self._img_ids[seq].shape[0]
|
426 |
+
|
427 |
+
ids = [id] + [
|
428 |
+
max(min(i, seq_len - 1), 0)
|
429 |
+
for i in range(
|
430 |
+
id - self._left_offset,
|
431 |
+
id - self._left_offset + self.frame_count * self.dilation,
|
432 |
+
self.dilation,
|
433 |
+
)
|
434 |
+
if i != id
|
435 |
+
]
|
436 |
+
ids_fish = [max(min(id + self.fisheye_offset, seq_len - 1), 0)] + [
|
437 |
+
max(min(i, seq_len - 1), 0)
|
438 |
+
for i in range(
|
439 |
+
id + self.fisheye_offset - self._left_offset,
|
440 |
+
id
|
441 |
+
+ self.fisheye_offset
|
442 |
+
- self._left_offset
|
443 |
+
+ self.frame_count * self.dilation,
|
444 |
+
self.dilation,
|
445 |
+
)
|
446 |
+
if i != id + self.fisheye_offset
|
447 |
+
]
|
448 |
+
|
449 |
+
img_ids = [self.get_img_id_from_id(seq, id) for id in ids]
|
450 |
+
img_ids_fish = [self.get_img_id_from_id(seq, id) for id in ids_fish]
|
451 |
+
|
452 |
+
for img_id in img_ids:
|
453 |
+
if not (
|
454 |
+
(image_00 / f"{img_id:010d}.png").exists()
|
455 |
+
and (image_01 / f"{img_id:010d}.png").exists()
|
456 |
+
):
|
457 |
+
return False
|
458 |
+
if self.return_fisheye:
|
459 |
+
for img_id in img_ids_fish:
|
460 |
+
if not (
|
461 |
+
(image_02 / f"{img_id:010d}.png").exists()
|
462 |
+
and (image_03 / f"{img_id:010d}.png").exists()
|
463 |
+
):
|
464 |
+
return False
|
465 |
+
return True
|
466 |
+
|
467 |
+
@staticmethod
|
468 |
+
def _get_sequences(data_path):
|
469 |
+
all_sequences = []
|
470 |
+
|
471 |
+
seqs_path = Path(data_path) / "data_2d_raw"
|
472 |
+
for seq in seqs_path.iterdir():
|
473 |
+
if not seq.is_dir():
|
474 |
+
continue
|
475 |
+
all_sequences.append(seq.name)
|
476 |
+
|
477 |
+
return all_sequences
|
478 |
+
|
479 |
+
@staticmethod
|
480 |
+
def _full_split(sequences, img_ids, check_integrity):
|
481 |
+
datapoints = []
|
482 |
+
for seq in sorted(sequences):
|
483 |
+
ids = [id for id in range(len(img_ids[seq])) if check_integrity(seq, id)]
|
484 |
+
datapoints_seq = [(seq, id, False) for id in ids] + [
|
485 |
+
(seq, id, True) for id in ids
|
486 |
+
]
|
487 |
+
datapoints.extend(datapoints_seq)
|
488 |
+
return datapoints
|
489 |
+
|
490 |
+
@staticmethod
|
491 |
+
def _semantics_split(sequences, data_path, img_ids):
|
492 |
+
datapoints = []
|
493 |
+
for seq in sorted(sequences):
|
494 |
+
datapoints_seq = [(seq, id, False) for id in range(len(img_ids[seq]))]
|
495 |
+
datapoints_seq = [
|
496 |
+
dp
|
497 |
+
for dp in datapoints_seq
|
498 |
+
if os.path.exists(
|
499 |
+
os.path.join(
|
500 |
+
data_path,
|
501 |
+
"data_2d_semantics",
|
502 |
+
"train",
|
503 |
+
seq,
|
504 |
+
"image_00",
|
505 |
+
"semantic_rgb",
|
506 |
+
f"{img_ids[seq][dp[1]]:010d}.png",
|
507 |
+
)
|
508 |
+
)
|
509 |
+
]
|
510 |
+
datapoints.extend(datapoints_seq)
|
511 |
+
return datapoints
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
def _load_split(split_path, img_ids):
|
515 |
+
img_id2id = {
|
516 |
+
seq: {id: i for i, id in enumerate(ids)} for seq, ids in img_ids.items()
|
517 |
+
}
|
518 |
+
|
519 |
+
with open(split_path, "r") as f:
|
520 |
+
lines = f.readlines()
|
521 |
+
|
522 |
+
def split_line(l):
|
523 |
+
segments = l.split(" ")
|
524 |
+
seq = segments[0]
|
525 |
+
id = img_id2id[seq][int(segments[1])]
|
526 |
+
return seq, id, segments[2][0] == "r"
|
527 |
+
|
528 |
+
return list(map(split_line, lines))
|
529 |
+
|
530 |
+
@staticmethod
|
531 |
+
def _load_calibs(data_path, fisheye_rotation=0):
|
532 |
+
data_path = Path(data_path)
|
533 |
+
|
534 |
+
calib_folder = data_path / "calibration"
|
535 |
+
cam_to_pose_file = calib_folder / "calib_cam_to_pose.txt"
|
536 |
+
cam_to_velo_file = calib_folder / "calib_cam_to_velo.txt"
|
537 |
+
intrinsics_file = calib_folder / "perspective.txt"
|
538 |
+
fisheye_02_file = calib_folder / "image_02.yaml"
|
539 |
+
fisheye_03_file = calib_folder / "image_03.yaml"
|
540 |
+
|
541 |
+
cam_to_pose_data = {}
|
542 |
+
with open(cam_to_pose_file, "r") as f:
|
543 |
+
for line in f.readlines():
|
544 |
+
key, value = line.split(":", 1)
|
545 |
+
try:
|
546 |
+
cam_to_pose_data[key] = np.array(
|
547 |
+
[float(x) for x in value.split()], dtype=np.float32
|
548 |
+
)
|
549 |
+
except ValueError:
|
550 |
+
pass
|
551 |
+
|
552 |
+
cam_to_velo_data = None
|
553 |
+
with open(cam_to_velo_file, "r") as f:
|
554 |
+
line = f.readline()
|
555 |
+
try:
|
556 |
+
cam_to_velo_data = np.array(
|
557 |
+
[float(x) for x in line.split()], dtype=np.float32
|
558 |
+
)
|
559 |
+
except ValueError:
|
560 |
+
pass
|
561 |
+
|
562 |
+
intrinsics_data = {}
|
563 |
+
with open(intrinsics_file, "r") as f:
|
564 |
+
for line in f.readlines():
|
565 |
+
key, value = line.split(":", 1)
|
566 |
+
try:
|
567 |
+
intrinsics_data[key] = np.array(
|
568 |
+
[float(x) for x in value.split()], dtype=np.float32
|
569 |
+
)
|
570 |
+
except ValueError:
|
571 |
+
pass
|
572 |
+
|
573 |
+
with open(fisheye_02_file, "r") as f:
|
574 |
+
f.readline() # Skips first line that defines the YAML version
|
575 |
+
fisheye_02_data = yaml.safe_load(f)
|
576 |
+
|
577 |
+
with open(fisheye_03_file, "r") as f:
|
578 |
+
f.readline() # Skips first line that defines the YAML version
|
579 |
+
fisheye_03_data = yaml.safe_load(f)
|
580 |
+
|
581 |
+
im_size_rect = (
|
582 |
+
int(intrinsics_data["S_rect_00"][1]),
|
583 |
+
int(intrinsics_data["S_rect_00"][0]),
|
584 |
+
)
|
585 |
+
im_size_fish = (fisheye_02_data["image_height"], fisheye_02_data["image_width"])
|
586 |
+
|
587 |
+
# Projection matrices
|
588 |
+
# We use these projection matrices also when resampling the fisheye cameras.
|
589 |
+
# This makes downstream processing easier, but it could be done differently.
|
590 |
+
P_rect_00 = np.reshape(intrinsics_data["P_rect_00"], (3, 4))
|
591 |
+
P_rect_01 = np.reshape(intrinsics_data["P_rect_01"], (3, 4))
|
592 |
+
|
593 |
+
# Rotation matrices from raw to rectified -> Needs to be inverted later
|
594 |
+
R_rect_00 = np.eye(4, dtype=np.float32)
|
595 |
+
R_rect_01 = np.eye(4, dtype=np.float32)
|
596 |
+
R_rect_00[:3, :3] = np.reshape(intrinsics_data["R_rect_00"], (3, 3))
|
597 |
+
R_rect_01[:3, :3] = np.reshape(intrinsics_data["R_rect_01"], (3, 3))
|
598 |
+
|
599 |
+
# Rotation matrices from resampled fisheye to raw fisheye
|
600 |
+
fisheye_rotation = np.array(fisheye_rotation).reshape((1, 2))
|
601 |
+
R_02 = np.eye(4, dtype=np.float32)
|
602 |
+
R_03 = np.eye(4, dtype=np.float32)
|
603 |
+
R_02[:3, :3] = (
|
604 |
+
Rotation.from_euler("xy", fisheye_rotation[:, [1, 0]], degrees=True)
|
605 |
+
.as_matrix()
|
606 |
+
.astype(np.float32)
|
607 |
+
)
|
608 |
+
R_03[:3, :3] = (
|
609 |
+
Rotation.from_euler(
|
610 |
+
"xy", fisheye_rotation[:, [1, 0]] * np.array([[1, -1]]), degrees=True
|
611 |
+
)
|
612 |
+
.as_matrix()
|
613 |
+
.astype(np.float32)
|
614 |
+
)
|
615 |
+
|
616 |
+
# Load cam to pose transforms
|
617 |
+
T_00_to_pose = np.eye(4, dtype=np.float32)
|
618 |
+
T_01_to_pose = np.eye(4, dtype=np.float32)
|
619 |
+
T_02_to_pose = np.eye(4, dtype=np.float32)
|
620 |
+
T_03_to_pose = np.eye(4, dtype=np.float32)
|
621 |
+
T_00_to_velo = np.eye(4, dtype=np.float32)
|
622 |
+
|
623 |
+
T_00_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_00"], (3, 4))
|
624 |
+
T_01_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_01"], (3, 4))
|
625 |
+
T_02_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_02"], (3, 4))
|
626 |
+
T_03_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_03"], (3, 4))
|
627 |
+
T_00_to_velo[:3, :] = np.reshape(cam_to_velo_data, (3, 4))
|
628 |
+
|
629 |
+
# Compute cam to pose transforms for rectified perspective cameras
|
630 |
+
T_rect_00_to_pose = T_00_to_pose @ np.linalg.inv(R_rect_00)
|
631 |
+
T_rect_01_to_pose = T_01_to_pose @ np.linalg.inv(R_rect_01)
|
632 |
+
|
633 |
+
# Compute cam to pose transform for fisheye cameras
|
634 |
+
T_02_to_pose = T_02_to_pose @ R_02
|
635 |
+
T_03_to_pose = T_03_to_pose @ R_03
|
636 |
+
|
637 |
+
# Compute velo to cameras and velo to pose transforms
|
638 |
+
T_velo_to_rect_00 = R_rect_00 @ np.linalg.inv(T_00_to_velo)
|
639 |
+
T_velo_to_pose = T_rect_00_to_pose @ T_velo_to_rect_00
|
640 |
+
T_velo_to_rect_01 = np.linalg.inv(T_rect_01_to_pose) @ T_velo_to_pose
|
641 |
+
|
642 |
+
# Calibration matrix is the same for both perspective cameras
|
643 |
+
K = P_rect_00[:3, :3]
|
644 |
+
|
645 |
+
# Normalize calibration
|
646 |
+
f_x = K[0, 0] / im_size_rect[1]
|
647 |
+
f_y = K[1, 1] / im_size_rect[0]
|
648 |
+
c_x = K[0, 2] / im_size_rect[1]
|
649 |
+
c_y = K[1, 2] / im_size_rect[0]
|
650 |
+
|
651 |
+
# Change to image coordinates [-1, 1]
|
652 |
+
K[0, 0] = f_x * 2.0
|
653 |
+
K[1, 1] = f_y * 2.0
|
654 |
+
K[0, 2] = c_x * 2.0 - 1
|
655 |
+
K[1, 2] = c_y * 2.0 - 1
|
656 |
+
|
657 |
+
# Convert fisheye calibration to [-1, 1] image dimensions
|
658 |
+
fisheye_02_data["projection_parameters"]["gamma1"] = (
|
659 |
+
fisheye_02_data["projection_parameters"]["gamma1"] / im_size_fish[1]
|
660 |
+
) * 2.0
|
661 |
+
fisheye_02_data["projection_parameters"]["gamma2"] = (
|
662 |
+
fisheye_02_data["projection_parameters"]["gamma2"] / im_size_fish[0]
|
663 |
+
) * 2.0
|
664 |
+
fisheye_02_data["projection_parameters"]["u0"] = (
|
665 |
+
fisheye_02_data["projection_parameters"]["u0"] / im_size_fish[1]
|
666 |
+
) * 2.0 - 1.0
|
667 |
+
fisheye_02_data["projection_parameters"]["v0"] = (
|
668 |
+
fisheye_02_data["projection_parameters"]["v0"] / im_size_fish[0]
|
669 |
+
) * 2.0 - 1.0
|
670 |
+
|
671 |
+
fisheye_03_data["projection_parameters"]["gamma1"] = (
|
672 |
+
fisheye_03_data["projection_parameters"]["gamma1"] / im_size_fish[1]
|
673 |
+
) * 2.0
|
674 |
+
fisheye_03_data["projection_parameters"]["gamma2"] = (
|
675 |
+
fisheye_03_data["projection_parameters"]["gamma2"] / im_size_fish[0]
|
676 |
+
) * 2.0
|
677 |
+
fisheye_03_data["projection_parameters"]["u0"] = (
|
678 |
+
fisheye_03_data["projection_parameters"]["u0"] / im_size_fish[1]
|
679 |
+
) * 2.0 - 1.0
|
680 |
+
fisheye_03_data["projection_parameters"]["v0"] = (
|
681 |
+
fisheye_03_data["projection_parameters"]["v0"] / im_size_fish[0]
|
682 |
+
) * 2.0 - 1.0
|
683 |
+
|
684 |
+
# Use same camera calibration as perspective cameras for resampling
|
685 |
+
# K_fisheye = np.eye(3, dtype=np.float32)
|
686 |
+
# K_fisheye[0, 0] = 2
|
687 |
+
# K_fisheye[1, 1] = 2
|
688 |
+
|
689 |
+
K_fisheye = K
|
690 |
+
|
691 |
+
calibs = {
|
692 |
+
"K_perspective": K,
|
693 |
+
"K_fisheye": K_fisheye,
|
694 |
+
"T_cam_to_pose": {
|
695 |
+
"00": T_rect_00_to_pose,
|
696 |
+
"01": T_rect_01_to_pose,
|
697 |
+
"02": T_02_to_pose,
|
698 |
+
"03": T_03_to_pose,
|
699 |
+
},
|
700 |
+
"T_velo_to_cam": {
|
701 |
+
"00": T_velo_to_rect_00,
|
702 |
+
"01": T_velo_to_rect_01,
|
703 |
+
},
|
704 |
+
"T_velo_to_pose": T_velo_to_pose,
|
705 |
+
"fisheye": {
|
706 |
+
"calib_02": fisheye_02_data,
|
707 |
+
"calib_03": fisheye_03_data,
|
708 |
+
"R_02": R_02[:3, :3],
|
709 |
+
"R_03": R_03[:3, :3],
|
710 |
+
},
|
711 |
+
"im_size": im_size_rect,
|
712 |
+
}
|
713 |
+
|
714 |
+
return calibs
|
715 |
+
|
716 |
+
@staticmethod
|
717 |
+
def _get_resamplers(calibs, K_target, target_image_size):
|
718 |
+
resampler_02 = FisheyeToPinholeSampler(
|
719 |
+
K_target,
|
720 |
+
target_image_size,
|
721 |
+
calibs["fisheye"]["calib_02"],
|
722 |
+
calibs["fisheye"]["R_02"],
|
723 |
+
)
|
724 |
+
resampler_03 = FisheyeToPinholeSampler(
|
725 |
+
K_target,
|
726 |
+
target_image_size,
|
727 |
+
calibs["fisheye"]["calib_03"],
|
728 |
+
calibs["fisheye"]["R_03"],
|
729 |
+
)
|
730 |
+
|
731 |
+
return resampler_02, resampler_03
|
732 |
+
|
733 |
+
@staticmethod
|
734 |
+
def _load_poses(pose_path, sequences):
|
735 |
+
ids = {}
|
736 |
+
poses = {}
|
737 |
+
|
738 |
+
for seq in sequences:
|
739 |
+
pose_file = Path(pose_path) / seq / f"poses.txt"
|
740 |
+
|
741 |
+
try:
|
742 |
+
pose_data = np.loadtxt(pose_file)
|
743 |
+
except FileNotFoundError:
|
744 |
+
print(f"Ground truth poses are not avaialble for sequence {seq}.")
|
745 |
+
|
746 |
+
ids_seq = pose_data[:, 0].astype(int)
|
747 |
+
poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
|
748 |
+
poses_seq = np.concatenate(
|
749 |
+
(poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1
|
750 |
+
)
|
751 |
+
poses_seq[:, 3, 3] = 1
|
752 |
+
|
753 |
+
ids[seq] = ids_seq
|
754 |
+
poses[seq] = poses_seq
|
755 |
+
return ids, poses
|
756 |
+
|
757 |
+
@staticmethod
|
758 |
+
def _load_3d_bboxes(bbox_path, sequences):
|
759 |
+
bboxes = {}
|
760 |
+
|
761 |
+
for seq in sequences:
|
762 |
+
with open(Path(bbox_path) / f"{seq}.xml", "rb") as f:
|
763 |
+
tree = ET.parse(f)
|
764 |
+
root = tree.getroot()
|
765 |
+
|
766 |
+
objects = defaultdict(list)
|
767 |
+
|
768 |
+
num_bbox = 0
|
769 |
+
|
770 |
+
for child in root:
|
771 |
+
if child.find("transform") is None:
|
772 |
+
continue
|
773 |
+
obj = KITTI360Bbox3D()
|
774 |
+
if child.find("semanticId") is not None:
|
775 |
+
obj.parseBbox(child)
|
776 |
+
else:
|
777 |
+
obj.parseStuff(child)
|
778 |
+
# globalId = local2global(obj.semanticId, obj.instanceId)
|
779 |
+
# objects[globalId][obj.timestamp] = obj
|
780 |
+
objects[obj.timestamp].append(obj)
|
781 |
+
num_bbox += 1
|
782 |
+
|
783 |
+
# globalIds = np.asarray(list(objects.keys()))
|
784 |
+
# semanticIds, instanceIds = global2local(globalIds)
|
785 |
+
# for label in labels:
|
786 |
+
# if label.hasInstances:
|
787 |
+
# print(f'{label.name:<30}:\t {(semanticIds==label.id).sum()}')
|
788 |
+
# print(f'Loaded {len(globalIds)} instances')
|
789 |
+
# print(f'Loaded {num_bbox} boxes')
|
790 |
+
|
791 |
+
bboxes[seq] = objects
|
792 |
+
|
793 |
+
return bboxes
|
794 |
+
|
795 |
+
def get_img_id_from_id(self, sequence, id):
|
796 |
+
return self._img_ids[sequence][id]
|
797 |
+
|
798 |
+
def load_images(self, seq, img_ids, load_left, load_right, img_ids_fish=None):
|
799 |
+
imgs_p_left = []
|
800 |
+
imgs_f_left = []
|
801 |
+
imgs_p_right = []
|
802 |
+
imgs_f_right = []
|
803 |
+
|
804 |
+
if img_ids_fish is None:
|
805 |
+
img_ids_fish = img_ids
|
806 |
+
|
807 |
+
for id in img_ids:
|
808 |
+
if load_left:
|
809 |
+
img_perspective = (
|
810 |
+
cv2.cvtColor(
|
811 |
+
cv2.imread(
|
812 |
+
os.path.join(
|
813 |
+
self.data_path,
|
814 |
+
"data_2d_raw",
|
815 |
+
seq,
|
816 |
+
"image_00",
|
817 |
+
self._perspective_folder,
|
818 |
+
f"{id:010d}.png",
|
819 |
+
)
|
820 |
+
),
|
821 |
+
cv2.COLOR_BGR2RGB,
|
822 |
+
).astype(np.float32)
|
823 |
+
/ 255
|
824 |
+
)
|
825 |
+
imgs_p_left += [img_perspective]
|
826 |
+
|
827 |
+
if load_right:
|
828 |
+
img_perspective = (
|
829 |
+
cv2.cvtColor(
|
830 |
+
cv2.imread(
|
831 |
+
os.path.join(
|
832 |
+
self.data_path,
|
833 |
+
"data_2d_raw",
|
834 |
+
seq,
|
835 |
+
"image_01",
|
836 |
+
self._perspective_folder,
|
837 |
+
f"{id:010d}.png",
|
838 |
+
)
|
839 |
+
),
|
840 |
+
cv2.COLOR_BGR2RGB,
|
841 |
+
).astype(np.float32)
|
842 |
+
/ 255
|
843 |
+
)
|
844 |
+
imgs_p_right += [img_perspective]
|
845 |
+
|
846 |
+
for id in img_ids_fish:
|
847 |
+
if load_left:
|
848 |
+
img_fisheye = (
|
849 |
+
cv2.cvtColor(
|
850 |
+
cv2.imread(
|
851 |
+
os.path.join(
|
852 |
+
self.data_path,
|
853 |
+
"data_2d_raw",
|
854 |
+
seq,
|
855 |
+
"image_02",
|
856 |
+
self._fisheye_folder,
|
857 |
+
f"{id:010d}.png",
|
858 |
+
)
|
859 |
+
),
|
860 |
+
cv2.COLOR_BGR2RGB,
|
861 |
+
).astype(np.float32)
|
862 |
+
/ 255
|
863 |
+
)
|
864 |
+
imgs_f_left += [img_fisheye]
|
865 |
+
if load_right:
|
866 |
+
img_fisheye = (
|
867 |
+
cv2.cvtColor(
|
868 |
+
cv2.imread(
|
869 |
+
os.path.join(
|
870 |
+
self.data_path,
|
871 |
+
"data_2d_raw",
|
872 |
+
seq,
|
873 |
+
"image_03",
|
874 |
+
self._fisheye_folder,
|
875 |
+
f"{id:010d}.png",
|
876 |
+
)
|
877 |
+
),
|
878 |
+
cv2.COLOR_BGR2RGB,
|
879 |
+
).astype(np.float32)
|
880 |
+
/ 255
|
881 |
+
)
|
882 |
+
imgs_f_right += [img_fisheye]
|
883 |
+
|
884 |
+
return imgs_p_left, imgs_f_left, imgs_p_right, imgs_f_right
|
885 |
+
|
886 |
+
def process_img(
|
887 |
+
self,
|
888 |
+
img: np.array,
|
889 |
+
color_aug_fn=None,
|
890 |
+
resampler: FisheyeToPinholeSampler = None,
|
891 |
+
):
|
892 |
+
if resampler is not None and not self.is_preprocessed:
|
893 |
+
img = torch.tensor(img).permute(2, 0, 1)
|
894 |
+
img = resampler.resample(img)
|
895 |
+
else:
|
896 |
+
if self.target_image_size:
|
897 |
+
img = cv2.resize(
|
898 |
+
img,
|
899 |
+
(self.target_image_size[1], self.target_image_size[0]),
|
900 |
+
interpolation=cv2.INTER_LINEAR,
|
901 |
+
)
|
902 |
+
img = np.transpose(img, (2, 0, 1))
|
903 |
+
img = torch.tensor(img)
|
904 |
+
|
905 |
+
if color_aug_fn is not None:
|
906 |
+
img = color_aug_fn(img)
|
907 |
+
|
908 |
+
img = img * 2 - 1
|
909 |
+
return img
|
910 |
+
|
911 |
+
def load_occ(self, seq, poses):
|
912 |
+
world_transform = torch.inverse(poses[:1, :, :])
|
913 |
+
world_transform = cam_incl_adjust @ world_transform
|
914 |
+
seq_len = self._img_ids[seq].shape[0]
|
915 |
+
# Load lidar pointclouds
|
916 |
+
points_all, velo_poses = [], []
|
917 |
+
for id in range(id, min(id + self.aggregate_timesteps, seq_len)):
|
918 |
+
points = np.fromfile(
|
919 |
+
os.path.join(
|
920 |
+
self.data_path,
|
921 |
+
"data_3d_raw",
|
922 |
+
seq,
|
923 |
+
"velodyne_points",
|
924 |
+
"data",
|
925 |
+
f"{self._img_ids[seq][id]:010d}.bin",
|
926 |
+
),
|
927 |
+
dtype=np.float32,
|
928 |
+
).reshape(-1, 4)
|
929 |
+
points[:, 3] = 1.0
|
930 |
+
points = torch.tensor(points)
|
931 |
+
velo_pose = (
|
932 |
+
world_transform.squeeze()
|
933 |
+
@ torch.tensor(self._poses[seq][id])
|
934 |
+
@ torch.tensor(self._calibs["T_velo_to_pose"])
|
935 |
+
)
|
936 |
+
points_all.append(points)
|
937 |
+
velo_poses.append(velo_pose)
|
938 |
+
|
939 |
+
velo_poses = torch.stack(velo_poses, dim=0)
|
940 |
+
|
941 |
+
return self.kitti_velodyn.check_occupancy(points_all, velo_poses)
|
942 |
+
|
943 |
+
def get_3d_bboxes(self, seq, img_id, pose, projs):
|
944 |
+
seq_3d_bboxes = self._3d_bboxes[seq]
|
945 |
+
pose_w2c = np.linalg.inv(pose)
|
946 |
+
|
947 |
+
def filter_bbox(bbox):
|
948 |
+
verts = bbox.vertices
|
949 |
+
verts = (projs @ (pose_w2c[:3, :3] @ verts.T + pose_w2c[:3, 3, None])).T
|
950 |
+
verts[:, :2] /= verts[:, 2:3]
|
951 |
+
valid = (
|
952 |
+
((verts[:, 0] >= -1) & (verts[:, 0] <= 1))
|
953 |
+
& ((verts[:, 1] >= -1) & (verts[:, 1] <= 1))
|
954 |
+
& ((verts[:, 2] > 0) & (verts[:, 2] <= 80))
|
955 |
+
)
|
956 |
+
valid = np.any(valid, axis=-1)
|
957 |
+
return valid
|
958 |
+
|
959 |
+
bboxes = seq_3d_bboxes[-1] + seq_3d_bboxes[img_id]
|
960 |
+
|
961 |
+
bboxes = list(filter(filter_bbox, bboxes))
|
962 |
+
|
963 |
+
bboxes = [
|
964 |
+
{
|
965 |
+
"vertices": bbox.vertices,
|
966 |
+
"faces": bbox.faces,
|
967 |
+
"semanticId": bbox.semanticId,
|
968 |
+
"instanceId": bbox.instanceId,
|
969 |
+
}
|
970 |
+
for i, bbox in enumerate(bboxes)
|
971 |
+
] # if valid[i]
|
972 |
+
|
973 |
+
return bboxes
|
974 |
+
|
975 |
+
def load_segmentation(self, seq, img_id):
|
976 |
+
seg = cv2.imread(
|
977 |
+
os.path.join(
|
978 |
+
self.data_path,
|
979 |
+
"data_2d_semantics",
|
980 |
+
"train",
|
981 |
+
seq,
|
982 |
+
"image_00",
|
983 |
+
"semantic",
|
984 |
+
f"{img_id:010d}.png",
|
985 |
+
),
|
986 |
+
cv2.IMREAD_UNCHANGED,
|
987 |
+
)
|
988 |
+
seg = cv2.resize(
|
989 |
+
seg,
|
990 |
+
(self.target_image_size[1], self.target_image_size[0]),
|
991 |
+
interpolation=cv2.INTER_NEAREST,
|
992 |
+
)
|
993 |
+
return seg
|
994 |
+
|
995 |
+
def load_depth(self, seq, img_id, is_right):
|
996 |
+
points = np.fromfile(
|
997 |
+
os.path.join(
|
998 |
+
self.data_path,
|
999 |
+
"data_3d_raw",
|
1000 |
+
seq,
|
1001 |
+
"velodyne_points",
|
1002 |
+
"data",
|
1003 |
+
f"{img_id:010d}.bin",
|
1004 |
+
),
|
1005 |
+
dtype=np.float32,
|
1006 |
+
).reshape(-1, 4)
|
1007 |
+
points[:, 3] = 1.0
|
1008 |
+
|
1009 |
+
T_velo_to_cam = self._calibs["T_velo_to_cam"]["00" if not is_right else "01"]
|
1010 |
+
K = self._calibs["K_perspective"]
|
1011 |
+
|
1012 |
+
# project the points to the camera
|
1013 |
+
velo_pts_im = np.dot(K @ T_velo_to_cam[:3, :], points.T).T
|
1014 |
+
velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., None]
|
1015 |
+
|
1016 |
+
# the projection is normalized to [-1, 1] -> transform to [0, height-1] x [0, width-1]
|
1017 |
+
velo_pts_im[:, 0] = np.round(
|
1018 |
+
(velo_pts_im[:, 0] * 0.5 + 0.5) * self.target_image_size[1]
|
1019 |
+
)
|
1020 |
+
velo_pts_im[:, 1] = np.round(
|
1021 |
+
(velo_pts_im[:, 1] * 0.5 + 0.5) * self.target_image_size[0]
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
# check if in bounds
|
1025 |
+
val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
|
1026 |
+
val_inds = (
|
1027 |
+
val_inds
|
1028 |
+
& (velo_pts_im[:, 0] < self.target_image_size[1])
|
1029 |
+
& (velo_pts_im[:, 1] < self.target_image_size[0])
|
1030 |
+
)
|
1031 |
+
velo_pts_im = velo_pts_im[val_inds, :]
|
1032 |
+
|
1033 |
+
# project to image
|
1034 |
+
depth = np.zeros(self.target_image_size)
|
1035 |
+
depth[
|
1036 |
+
velo_pts_im[:, 1].astype(np.int32), velo_pts_im[:, 0].astype(np.int32)
|
1037 |
+
] = velo_pts_im[:, 2]
|
1038 |
+
|
1039 |
+
# find the duplicate points and choose the closest depth
|
1040 |
+
inds = (
|
1041 |
+
velo_pts_im[:, 1] * (self.target_image_size[1] - 1) + velo_pts_im[:, 0] - 1
|
1042 |
+
)
|
1043 |
+
dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
|
1044 |
+
for dd in dupe_inds:
|
1045 |
+
pts = np.where(inds == dd)[0]
|
1046 |
+
x_loc = int(velo_pts_im[pts[0], 0])
|
1047 |
+
y_loc = int(velo_pts_im[pts[0], 1])
|
1048 |
+
depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
|
1049 |
+
depth[depth < 0] = 0
|
1050 |
+
|
1051 |
+
return depth[None, :, :]
|
1052 |
+
|
1053 |
+
def __getitem__(self, index: int):
|
1054 |
+
_start_time = time.time()
|
1055 |
+
|
1056 |
+
if index >= self.length:
|
1057 |
+
raise IndexError()
|
1058 |
+
|
1059 |
+
if self._skip != 0:
|
1060 |
+
index += self._skip
|
1061 |
+
|
1062 |
+
sequence, id, is_right = self._datapoints[index]
|
1063 |
+
seq_len = self._img_ids[sequence].shape[0]
|
1064 |
+
|
1065 |
+
load_left, load_right = (
|
1066 |
+
not is_right
|
1067 |
+
) or self.return_stereo, is_right or self.return_stereo
|
1068 |
+
|
1069 |
+
## randomly sample fisheye in the time steps where it can see the occlusion with the stereo
|
1070 |
+
if self.random_fisheye_offset:
|
1071 |
+
fisheye_offset = self.fisheye_offset[
|
1072 |
+
torch.randint(0, len(self.fisheye_offset), (1,)).item()
|
1073 |
+
] ## randomly select among the given list of fisheye_ids from config
|
1074 |
+
else:
|
1075 |
+
fisheye_offset = self.fisheye_offset[-1]
|
1076 |
+
|
1077 |
+
if self.random_stereo_offset:
|
1078 |
+
stereo_offset = self.stereo_offset[
|
1079 |
+
torch.randint(0, len(self.stereo_offset), (1,)).item()
|
1080 |
+
]
|
1081 |
+
else:
|
1082 |
+
stereo_offset = self.stereo_offset[0]
|
1083 |
+
|
1084 |
+
# ids = [id] + [max(min(i, seq_len-1), 0) for i in range(id - self._left_offset, id - self._left_offset + self.frame_count * self.dilation, self.dilation) if i != id]
|
1085 |
+
# ids_fish = [max(min(id + self.fisheye_offset, seq_len-1), 0)] + [max(min(i, seq_len-1), 0) for i in range(id + self.fisheye_offset - self._left_offset, id + self.fisheye_offset - self._left_offset + self.frame_count * self.dilation, self.dilation) if i != id + self.fisheye_offset]
|
1086 |
+
# img_ids = [self.get_img_id_from_id(sequence, id) for id in ids]
|
1087 |
+
# img_ids_fish = [self.get_img_id_from_id(sequence, id) for id in ids_fish]
|
1088 |
+
|
1089 |
+
id_st = (
|
1090 |
+
id + stereo_offset - 1
|
1091 |
+
) ## TODO: find out how to deal with 3 steps ahead without -1 => as we sample scenes with the amount of stereo_offset
|
1092 |
+
ids = [id] + [
|
1093 |
+
max(min(i, seq_len - 1), 0)
|
1094 |
+
for i in range(
|
1095 |
+
id_st - self._left_offset,
|
1096 |
+
id_st - self._left_offset + self.frame_count * self.dilation,
|
1097 |
+
self.dilation,
|
1098 |
+
)
|
1099 |
+
if i != id_st
|
1100 |
+
]
|
1101 |
+
ids_fish = [max(min(id + fisheye_offset, seq_len - 1), 0)] + [
|
1102 |
+
max(min(i, seq_len - 1), 0)
|
1103 |
+
for i in range(
|
1104 |
+
id + fisheye_offset - self._left_offset,
|
1105 |
+
id
|
1106 |
+
+ fisheye_offset
|
1107 |
+
- self._left_offset
|
1108 |
+
+ self.frame_count * self.dilation,
|
1109 |
+
self.dilation,
|
1110 |
+
)
|
1111 |
+
if i != id + fisheye_offset
|
1112 |
+
]
|
1113 |
+
## and now ids_fish is 5 steps ahead of ids with 2 fisheye scenes
|
1114 |
+
img_ids = [self.get_img_id_from_id(sequence, id) for id in ids]
|
1115 |
+
img_ids_fish = [self.get_img_id_from_id(sequence, id) for id in ids_fish]
|
1116 |
+
|
1117 |
+
if not self.return_fisheye:
|
1118 |
+
ids_fish, img_ids_fish = [], []
|
1119 |
+
|
1120 |
+
if self.color_aug:
|
1121 |
+
color_aug_fn = get_color_aug_fn(
|
1122 |
+
ColorJitter.get_params(
|
1123 |
+
brightness=(0.8, 1.2),
|
1124 |
+
contrast=(0.8, 1.2),
|
1125 |
+
saturation=(0.8, 1.2),
|
1126 |
+
hue=(-0.1, 0.1),
|
1127 |
+
)
|
1128 |
+
)
|
1129 |
+
else:
|
1130 |
+
color_aug_fn = None
|
1131 |
+
|
1132 |
+
_start_time_loading = time.time()
|
1133 |
+
imgs_p_left, imgs_f_left, imgs_p_right, imgs_f_right = self.load_images(
|
1134 |
+
sequence, img_ids, load_left, load_right, img_ids_fish=img_ids_fish
|
1135 |
+
)
|
1136 |
+
_loading_time = np.array(time.time() - _start_time_loading)
|
1137 |
+
|
1138 |
+
_start_time_processing = time.time()
|
1139 |
+
imgs_p_left = [
|
1140 |
+
self.process_img(img, color_aug_fn=color_aug_fn) for img in imgs_p_left
|
1141 |
+
]
|
1142 |
+
imgs_f_left = [
|
1143 |
+
self.process_img(
|
1144 |
+
img, color_aug_fn=color_aug_fn, resampler=self._resampler_02
|
1145 |
+
)
|
1146 |
+
for img in imgs_f_left
|
1147 |
+
]
|
1148 |
+
imgs_p_right = [
|
1149 |
+
self.process_img(img, color_aug_fn=color_aug_fn) for img in imgs_p_right
|
1150 |
+
]
|
1151 |
+
imgs_f_right = [
|
1152 |
+
self.process_img(
|
1153 |
+
img, color_aug_fn=color_aug_fn, resampler=self._resampler_03
|
1154 |
+
)
|
1155 |
+
for img in imgs_f_right
|
1156 |
+
]
|
1157 |
+
_processing_time = np.array(time.time() - _start_time_processing)
|
1158 |
+
|
1159 |
+
# These poses are camera to world !!
|
1160 |
+
poses_p_left = (
|
1161 |
+
[
|
1162 |
+
self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["00"]
|
1163 |
+
for i in ids
|
1164 |
+
]
|
1165 |
+
if load_left
|
1166 |
+
else []
|
1167 |
+
)
|
1168 |
+
poses_f_left = (
|
1169 |
+
[
|
1170 |
+
self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["02"]
|
1171 |
+
for i in ids_fish
|
1172 |
+
]
|
1173 |
+
if load_left
|
1174 |
+
else []
|
1175 |
+
)
|
1176 |
+
poses_p_right = (
|
1177 |
+
[
|
1178 |
+
self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["01"]
|
1179 |
+
for i in ids
|
1180 |
+
]
|
1181 |
+
if load_right
|
1182 |
+
else []
|
1183 |
+
)
|
1184 |
+
poses_f_right = (
|
1185 |
+
[
|
1186 |
+
self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["03"]
|
1187 |
+
for i in ids_fish
|
1188 |
+
]
|
1189 |
+
if load_right
|
1190 |
+
else []
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
projs_p_left = [self._calibs["K_perspective"] for _ in ids] if load_left else []
|
1194 |
+
projs_f_left = (
|
1195 |
+
[self._calibs["K_fisheye"] for _ in ids_fish] if load_left else []
|
1196 |
+
)
|
1197 |
+
projs_p_right = (
|
1198 |
+
[self._calibs["K_perspective"] for _ in ids] if load_right else []
|
1199 |
+
)
|
1200 |
+
projs_f_right = (
|
1201 |
+
[self._calibs["K_fisheye"] for _ in ids_fish] if load_right else []
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
imgs = (
|
1205 |
+
imgs_p_left + imgs_p_right + imgs_f_left + imgs_f_right
|
1206 |
+
if not is_right
|
1207 |
+
else imgs_p_right + imgs_p_left + imgs_f_right + imgs_f_left
|
1208 |
+
)
|
1209 |
+
projs = (
|
1210 |
+
projs_p_left + projs_p_right + projs_f_left + projs_f_right
|
1211 |
+
if not is_right
|
1212 |
+
else projs_p_right + projs_p_left + projs_f_right + projs_f_left
|
1213 |
+
)
|
1214 |
+
poses = (
|
1215 |
+
poses_p_left + poses_p_right + poses_f_left + poses_f_right
|
1216 |
+
if not is_right
|
1217 |
+
else poses_p_right + poses_p_left + poses_f_right + poses_f_left
|
1218 |
+
)
|
1219 |
+
ids = np.array(ids + ids + ids_fish + ids_fish, dtype=np.int32)
|
1220 |
+
|
1221 |
+
if self.return_depth:
|
1222 |
+
depths = [self.load_depth(sequence, img_ids[0], is_right)]
|
1223 |
+
else:
|
1224 |
+
depths = []
|
1225 |
+
|
1226 |
+
if self.return_3d_bboxes:
|
1227 |
+
bboxes_3d = [self.get_3d_bboxes(sequence, img_ids[0], poses[0], projs[0])]
|
1228 |
+
else:
|
1229 |
+
bboxes_3d = []
|
1230 |
+
|
1231 |
+
if self.return_segmentation:
|
1232 |
+
segs = [self.load_segmentation(sequence, img_ids[0])]
|
1233 |
+
else:
|
1234 |
+
segs = []
|
1235 |
+
|
1236 |
+
if self.kitti_velodyn:
|
1237 |
+
is_occupied, is_visible = self.load_occ(sequence, poses)
|
1238 |
+
else:
|
1239 |
+
is_occupied, is_visible = [], []
|
1240 |
+
|
1241 |
+
_proc_time = np.array(time.time() - _start_time)
|
1242 |
+
|
1243 |
+
# print(_loading_time, _processing_time, _proc_time)
|
1244 |
+
|
1245 |
+
data = {
|
1246 |
+
"imgs": imgs,
|
1247 |
+
"projs": projs,
|
1248 |
+
"poses": poses,
|
1249 |
+
"depths": depths,
|
1250 |
+
"ts": ids,
|
1251 |
+
"3d_bboxes": bboxes_3d,
|
1252 |
+
"segs": segs,
|
1253 |
+
"is_occupied": is_occupied,
|
1254 |
+
"is_visible": is_visible,
|
1255 |
+
"t__get_item__": np.array([_proc_time]),
|
1256 |
+
"index": np.array([index]),
|
1257 |
+
}
|
1258 |
+
|
1259 |
+
return data
|
1260 |
+
|
1261 |
+
def __len__(self) -> int:
|
1262 |
+
# return 10
|
1263 |
+
return self.length
|
datasets/kitti_360/labels.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#
|
3 |
+
# KITTI-360 labels
|
4 |
+
#
|
5 |
+
|
6 |
+
from collections import namedtuple
|
7 |
+
|
8 |
+
|
9 |
+
#--------------------------------------------------------------------------------
|
10 |
+
# Definitions
|
11 |
+
#--------------------------------------------------------------------------------
|
12 |
+
|
13 |
+
# a label and all meta information
|
14 |
+
Label = namedtuple( 'Label' , [
|
15 |
+
|
16 |
+
'name' , # The identifier of this label, e.g. 'car', 'person', ... .
|
17 |
+
# We use them to uniquely name a class
|
18 |
+
|
19 |
+
'id' , # An integer ID that is associated with this label.
|
20 |
+
# The IDs are used to represent the label in ground truth images
|
21 |
+
# An ID of -1 means that this label does not have an ID and thus
|
22 |
+
# is ignored when creating ground truth images (e.g. license plate).
|
23 |
+
# Do not modify these IDs, since exactly these IDs are expected by the
|
24 |
+
# evaluation server.
|
25 |
+
|
26 |
+
'kittiId' , # An integer ID that is associated with this label for KITTI-360
|
27 |
+
# NOT FOR RELEASING
|
28 |
+
|
29 |
+
'trainId' , # Feel free to modify these IDs as suitable for your method. Then create
|
30 |
+
# ground truth images with train IDs, using the tools provided in the
|
31 |
+
# 'preparation' folder. However, make sure to validate or submit results
|
32 |
+
# to our evaluation server using the regular IDs above!
|
33 |
+
# For trainIds, multiple labels might have the same ID. Then, these labels
|
34 |
+
# are mapped to the same class in the ground truth images. For the inverse
|
35 |
+
# mapping, we use the label that is defined first in the list below.
|
36 |
+
# For example, mapping all void-type classes to the same ID in training,
|
37 |
+
# might make sense for some approaches.
|
38 |
+
# Max value is 255!
|
39 |
+
|
40 |
+
'category' , # The name of the category that this label belongs to
|
41 |
+
|
42 |
+
'categoryId' , # The ID of this category. Used to create ground truth images
|
43 |
+
# on category level.
|
44 |
+
|
45 |
+
'hasInstances', # Whether this label distinguishes between single instances or not
|
46 |
+
|
47 |
+
'ignoreInEval', # Whether pixels having this class as ground truth label are ignored
|
48 |
+
# during evaluations or not
|
49 |
+
|
50 |
+
'ignoreInInst', # Whether pixels having this class as ground truth label are ignored
|
51 |
+
# during evaluations of instance segmentation or not
|
52 |
+
|
53 |
+
'color' , # The color of this label
|
54 |
+
] )
|
55 |
+
|
56 |
+
|
57 |
+
#--------------------------------------------------------------------------------
|
58 |
+
# A list of all labels
|
59 |
+
#--------------------------------------------------------------------------------
|
60 |
+
|
61 |
+
# Please adapt the train IDs as appropriate for your approach.
|
62 |
+
# Note that you might want to ignore labels with ID 255 during training.
|
63 |
+
# Further note that the current train IDs are only a suggestion. You can use whatever you like.
|
64 |
+
# Make sure to provide your results using the original IDs and not the training IDs.
|
65 |
+
# Note that many IDs are ignored in evaluation and thus you never need to predict these!
|
66 |
+
|
67 |
+
labels = [
|
68 |
+
# name id kittiId, trainId category catId hasInstances ignoreInEval ignoreInInst color
|
69 |
+
Label( 'unlabeled' , 0 , -1 , 255 , 'void' , 0 , False , True , True , ( 0, 0, 0) ),
|
70 |
+
Label( 'ego vehicle' , 1 , -1 , 255 , 'void' , 0 , False , True , True , ( 0, 0, 0) ),
|
71 |
+
Label( 'rectification border' , 2 , -1 , 255 , 'void' , 0 , False , True , True , ( 0, 0, 0) ),
|
72 |
+
Label( 'out of roi' , 3 , -1 , 255 , 'void' , 0 , False , True , True , ( 0, 0, 0) ),
|
73 |
+
Label( 'static' , 4 , -1 , 255 , 'void' , 0 , False , True , True , ( 0, 0, 0) ),
|
74 |
+
Label( 'dynamic' , 5 , -1 , 255 , 'void' , 0 , False , True , True , (111, 74, 0) ),
|
75 |
+
Label( 'ground' , 6 , -1 , 255 , 'void' , 0 , False , True , True , ( 81, 0, 81) ),
|
76 |
+
Label( 'road' , 7 , 1 , 0 , 'flat' , 1 , False , False , False , (128, 64,128) ),
|
77 |
+
Label( 'sidewalk' , 8 , 3 , 1 , 'flat' , 1 , False , False , False , (244, 35,232) ),
|
78 |
+
Label( 'parking' , 9 , 2 , 255 , 'flat' , 1 , False , True , True , (250,170,160) ),
|
79 |
+
Label( 'rail track' , 10 , 10, 255 , 'flat' , 1 , False , True , True , (230,150,140) ),
|
80 |
+
Label( 'building' , 11 , 11, 2 , 'construction' , 2 , True , False , False , ( 70, 70, 70) ),
|
81 |
+
Label( 'wall' , 12 , 7 , 3 , 'construction' , 2 , False , False , False , (102,102,156) ),
|
82 |
+
Label( 'fence' , 13 , 8 , 4 , 'construction' , 2 , False , False , False , (190,153,153) ),
|
83 |
+
Label( 'guard rail' , 14 , 30, 255 , 'construction' , 2 , False , True , True , (180,165,180) ),
|
84 |
+
Label( 'bridge' , 15 , 31, 255 , 'construction' , 2 , False , True , True , (150,100,100) ),
|
85 |
+
Label( 'tunnel' , 16 , 32, 255 , 'construction' , 2 , False , True , True , (150,120, 90) ),
|
86 |
+
Label( 'pole' , 17 , 21, 5 , 'object' , 3 , True , False , True , (153,153,153) ),
|
87 |
+
Label( 'polegroup' , 18 , -1 , 255 , 'object' , 3 , False , True , True , (153,153,153) ),
|
88 |
+
Label( 'traffic light' , 19 , 23, 6 , 'object' , 3 , True , False , True , (250,170, 30) ),
|
89 |
+
Label( 'traffic sign' , 20 , 24, 7 , 'object' , 3 , True , False , True , (220,220, 0) ),
|
90 |
+
Label( 'vegetation' , 21 , 5 , 8 , 'nature' , 4 , False , False , False , (107,142, 35) ),
|
91 |
+
Label( 'terrain' , 22 , 4 , 9 , 'nature' , 4 , False , False , False , (152,251,152) ),
|
92 |
+
Label( 'sky' , 23 , 9 , 10 , 'sky' , 5 , False , False , False , ( 70,130,180) ),
|
93 |
+
Label( 'person' , 24 , 19, 11 , 'human' , 6 , True , False , False , (220, 20, 60) ),
|
94 |
+
Label( 'rider' , 25 , 20, 12 , 'human' , 6 , True , False , False , (255, 0, 0) ),
|
95 |
+
Label( 'car' , 26 , 13, 13 , 'vehicle' , 7 , True , False , False , ( 0, 0,142) ),
|
96 |
+
Label( 'truck' , 27 , 14, 14 , 'vehicle' , 7 , True , False , False , ( 0, 0, 70) ),
|
97 |
+
Label( 'bus' , 28 , 34, 15 , 'vehicle' , 7 , True , False , False , ( 0, 60,100) ),
|
98 |
+
Label( 'caravan' , 29 , 16, 255 , 'vehicle' , 7 , True , True , True , ( 0, 0, 90) ),
|
99 |
+
Label( 'trailer' , 30 , 15, 255 , 'vehicle' , 7 , True , True , True , ( 0, 0,110) ),
|
100 |
+
Label( 'train' , 31 , 33, 16 , 'vehicle' , 7 , True , False , False , ( 0, 80,100) ),
|
101 |
+
Label( 'motorcycle' , 32 , 17, 17 , 'vehicle' , 7 , True , False , False , ( 0, 0,230) ),
|
102 |
+
Label( 'bicycle' , 33 , 18, 18 , 'vehicle' , 7 , True , False , False , (119, 11, 32) ),
|
103 |
+
Label( 'garage' , 34 , 12, 2 , 'construction' , 2 , True , True , True , ( 64,128,128) ),
|
104 |
+
Label( 'gate' , 35 , 6 , 4 , 'construction' , 2 , False , True , True , (190,153,153) ),
|
105 |
+
Label( 'stop' , 36 , 29, 255 , 'construction' , 2 , True , True , True , (150,120, 90) ),
|
106 |
+
Label( 'smallpole' , 37 , 22, 5 , 'object' , 3 , True , True , True , (153,153,153) ),
|
107 |
+
Label( 'lamp' , 38 , 25, 255 , 'object' , 3 , True , True , True , (0, 64, 64) ),
|
108 |
+
Label( 'trash bin' , 39 , 26, 255 , 'object' , 3 , True , True , True , (0, 128,192) ),
|
109 |
+
Label( 'vending machine' , 40 , 27, 255 , 'object' , 3 , True , True , True , (128, 64, 0) ),
|
110 |
+
Label( 'box' , 41 , 28, 255 , 'object' , 3 , True , True , True , (64, 64,128) ),
|
111 |
+
Label( 'unknown construction' , 42 , 35, 255 , 'void' , 0 , False , True , True , (102, 0, 0) ),
|
112 |
+
Label( 'unknown vehicle' , 43 , 36, 255 , 'void' , 0 , False , True , True , ( 51, 0, 51) ),
|
113 |
+
Label( 'unknown object' , 44 , 37, 255 , 'void' , 0 , False , True , True , ( 32, 32, 32) ),
|
114 |
+
Label( 'license plate' , -1 , -1, -1 , 'vehicle' , 7 , False , True , True , ( 0, 0,142) ),
|
115 |
+
]
|
116 |
+
|
117 |
+
#--------------------------------------------------------------------------------
|
118 |
+
# Create dictionaries for a fast lookup
|
119 |
+
#--------------------------------------------------------------------------------
|
120 |
+
|
121 |
+
# Please refer to the main method below for example usages!
|
122 |
+
|
123 |
+
# name to label object
|
124 |
+
name2label = { label.name : label for label in labels }
|
125 |
+
# id to label object
|
126 |
+
id2label = { label.id : label for label in labels }
|
127 |
+
# trainId to label object
|
128 |
+
trainId2label = { label.trainId : label for label in reversed(labels) }
|
129 |
+
# KITTI-360 ID to cityscapes ID
|
130 |
+
kittiId2label = { label.kittiId : label for label in labels }
|
131 |
+
# category to list of label objects
|
132 |
+
category2labels = {}
|
133 |
+
for label in labels:
|
134 |
+
category = label.category
|
135 |
+
if category in category2labels:
|
136 |
+
category2labels[category].append(label)
|
137 |
+
else:
|
138 |
+
category2labels[category] = [label]
|
139 |
+
|
140 |
+
#--------------------------------------------------------------------------------
|
141 |
+
# Assure single instance name
|
142 |
+
#--------------------------------------------------------------------------------
|
143 |
+
|
144 |
+
# returns the label name that describes a single instance (if possible)
|
145 |
+
# e.g. input | output
|
146 |
+
# ----------------------
|
147 |
+
# car | car
|
148 |
+
# cargroup | car
|
149 |
+
# foo | None
|
150 |
+
# foogroup | None
|
151 |
+
# skygroup | None
|
152 |
+
def assureSingleInstanceName( name ):
|
153 |
+
# if the name is known, it is not a group
|
154 |
+
if name in name2label:
|
155 |
+
return name
|
156 |
+
# test if the name actually denotes a group
|
157 |
+
if not name.endswith("group"):
|
158 |
+
return None
|
159 |
+
# remove group
|
160 |
+
name = name[:-len("group")]
|
161 |
+
# test if the new name exists
|
162 |
+
if not name in name2label:
|
163 |
+
return None
|
164 |
+
# test if the new name denotes a label that actually has instances
|
165 |
+
if not name2label[name].hasInstances:
|
166 |
+
return None
|
167 |
+
# all good then
|
168 |
+
return name
|
169 |
+
|
170 |
+
#--------------------------------------------------------------------------------
|
171 |
+
# Main for testing
|
172 |
+
#--------------------------------------------------------------------------------
|
173 |
+
|
174 |
+
# just a dummy main
|
175 |
+
if __name__ == "__main__":
|
176 |
+
# Print all the labels
|
177 |
+
print("List of KITTI-360 labels:")
|
178 |
+
print("")
|
179 |
+
print(" {:>21} | {:>3} | {:>7} | {:>14} | {:>10} | {:>12} | {:>12}".format( 'name', 'id', 'trainId', 'category', 'categoryId', 'hasInstances', 'ignoreInEval' ))
|
180 |
+
print(" " + ('-' * 98))
|
181 |
+
for label in labels:
|
182 |
+
# print(" {:>21} | {:>3} | {:>7} | {:>14} | {:>10} | {:>12} | {:>12}".format( label.name, label.id, label.trainId, label.category, label.categoryId, label.hasInstances, label.ignoreInEval ))
|
183 |
+
print(" \"{:}\"".format(label.name))
|
184 |
+
print("")
|
185 |
+
|
186 |
+
print("Example usages:")
|
187 |
+
|
188 |
+
# Map from name to label
|
189 |
+
name = 'car'
|
190 |
+
id = name2label[name].id
|
191 |
+
print("ID of label '{name}': {id}".format( name=name, id=id ))
|
192 |
+
|
193 |
+
# Map from ID to label
|
194 |
+
category = id2label[id].category
|
195 |
+
print("Category of label with ID '{id}': {category}".format( id=id, category=category ))
|
196 |
+
|
197 |
+
# Map from trainID to label
|
198 |
+
trainId = 0
|
199 |
+
name = trainId2label[trainId].name
|
200 |
+
print("Name of label with trainID '{id}': {name}".format( id=trainId, name=name ))
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0000_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0002_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0003_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0004_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0005_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0006_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0007_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0009_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/orb_slam_poses/2013_05_28_drive_0010_sync/poses.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/kitti_360/preprocess_kitti_360.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sys
|
3 |
+
sys.path.append(".")
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from datasets.kitti_360.kitti_360_dataset import Kitti360Dataset
|
13 |
+
|
14 |
+
DRY_RUN = False
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
parser = argparse.ArgumentParser("KITTI 360 Preprocessing")
|
19 |
+
parser.add_argument("--data_path", "-d", type=str)
|
20 |
+
parser.add_argument("--resolution", "-r", default=(192, 640))
|
21 |
+
parser.add_argument("--fisheye_rotation", "-f", default=(0, -15))
|
22 |
+
parser.add_argument("--only_fisheye", "-o", action="store_true")
|
23 |
+
|
24 |
+
args = parser.parse_args()
|
25 |
+
|
26 |
+
data_path = Path(args.data_path)
|
27 |
+
resolution = args.resolution
|
28 |
+
rotation = args.fisheye_rotation
|
29 |
+
only_fisheye = args.only_fisheye
|
30 |
+
|
31 |
+
print("Setting up dataset")
|
32 |
+
dataset = Kitti360Dataset(
|
33 |
+
data_path=data_path,
|
34 |
+
pose_path=data_path / "data_poses",
|
35 |
+
split_path=None,
|
36 |
+
return_stereo=True,
|
37 |
+
frame_count=1,
|
38 |
+
fisheye_rotation=rotation,
|
39 |
+
color_aug=False,
|
40 |
+
return_segmentation=False,
|
41 |
+
)
|
42 |
+
|
43 |
+
print("Setting up folders...")
|
44 |
+
|
45 |
+
for i in tqdm(range(len(dataset))):
|
46 |
+
sequence, id, is_right = dataset._datapoints[i]
|
47 |
+
|
48 |
+
if is_right:
|
49 |
+
continue
|
50 |
+
|
51 |
+
image_00 = data_path / "data_2d_raw" / sequence / "image_00" / f"data_{resolution[0]}x{resolution[1]}"
|
52 |
+
image_01 = data_path / "data_2d_raw" / sequence / "image_01" / f"data_{resolution[0]}x{resolution[1]}"
|
53 |
+
image_02 = data_path / "data_2d_raw" / sequence / "image_02" / f"data_{resolution[0]}x{resolution[1]}_{rotation[0]}x{rotation[1]}"
|
54 |
+
image_03 = data_path / "data_2d_raw" / sequence / "image_03" / f"data_{resolution[0]}x{resolution[1]}_{rotation[0]}x{rotation[1]}"
|
55 |
+
|
56 |
+
img_id = dataset._img_ids[sequence][id]
|
57 |
+
|
58 |
+
if (image_00 / f"{img_id:010d}.png").exists():
|
59 |
+
continue
|
60 |
+
|
61 |
+
data = dataset[i]
|
62 |
+
|
63 |
+
image_00.mkdir(exist_ok=True, parents=True)
|
64 |
+
image_01.mkdir(exist_ok=True, parents=True)
|
65 |
+
image_02.mkdir(exist_ok=True, parents=True)
|
66 |
+
image_03.mkdir(exist_ok=True, parents=True)
|
67 |
+
|
68 |
+
img_00 = (np.transpose(data["imgs"][0].numpy(), (1, 2, 0)) * .5 + .5) * 255.
|
69 |
+
img_01 = (np.transpose(data["imgs"][1].numpy(), (1, 2, 0)) * .5 + .5) * 255.
|
70 |
+
img_02 = (np.transpose(data["imgs"][2].numpy(), (1, 2, 0)) * .5 + .5) * 255.
|
71 |
+
img_03 = (np.transpose(data["imgs"][3].numpy(), (1, 2, 0)) * .5 + .5) * 255.
|
72 |
+
|
73 |
+
if not only_fisheye:
|
74 |
+
cv2.imwrite(str(image_00 / f"{img_id:010d}.png"), cv2.cvtColor(img_00, cv2.COLOR_RGB2BGR))
|
75 |
+
cv2.imwrite(str(image_01 / f"{img_id:010d}.png"), cv2.cvtColor(img_01, cv2.COLOR_RGB2BGR))
|
76 |
+
cv2.imwrite(str(image_02 / f"{img_id:010d}.png"), cv2.cvtColor(img_02, cv2.COLOR_RGB2BGR))
|
77 |
+
cv2.imwrite(str(image_03 / f"{img_id:010d}.png"), cv2.cvtColor(img_03, cv2.COLOR_RGB2BGR))
|
78 |
+
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
main()
|
datasets/kitti_360/splits/seg/test_files.txt
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2013_05_28_drive_0000_sync 0000000386 l
|
2 |
+
2013_05_28_drive_0000_sync 0000000406 l
|
3 |
+
2013_05_28_drive_0000_sync 0000000426 l
|
4 |
+
2013_05_28_drive_0000_sync 0000000446 l
|
5 |
+
2013_05_28_drive_0000_sync 0000000466 l
|
6 |
+
2013_05_28_drive_0000_sync 0000000486 l
|
7 |
+
2013_05_28_drive_0000_sync 0000000506 l
|
8 |
+
2013_05_28_drive_0000_sync 0000000546 l
|
9 |
+
2013_05_28_drive_0000_sync 0000000606 l
|
10 |
+
2013_05_28_drive_0000_sync 0000000626 l
|
11 |
+
2013_05_28_drive_0000_sync 0000000646 l
|
12 |
+
2013_05_28_drive_0000_sync 0000000666 l
|
13 |
+
2013_05_28_drive_0000_sync 0000000706 l
|
14 |
+
2013_05_28_drive_0000_sync 0000000726 l
|
15 |
+
2013_05_28_drive_0000_sync 0000000746 l
|
16 |
+
2013_05_28_drive_0000_sync 0000000786 l
|
17 |
+
2013_05_28_drive_0000_sync 0000000806 l
|
18 |
+
2013_05_28_drive_0000_sync 0000000826 l
|
19 |
+
2013_05_28_drive_0000_sync 0000000846 l
|
20 |
+
2013_05_28_drive_0000_sync 0000000866 l
|
21 |
+
2013_05_28_drive_0000_sync 0000000886 l
|
22 |
+
2013_05_28_drive_0000_sync 0000000906 l
|
23 |
+
2013_05_28_drive_0000_sync 0000000926 l
|
24 |
+
2013_05_28_drive_0000_sync 0000000946 l
|
25 |
+
2013_05_28_drive_0000_sync 0000000966 l
|
26 |
+
2013_05_28_drive_0000_sync 0000000986 l
|
27 |
+
2013_05_28_drive_0000_sync 0000001054 l
|
28 |
+
2013_05_28_drive_0000_sync 0000001111 l
|
29 |
+
2013_05_28_drive_0000_sync 0000001138 l
|
30 |
+
2013_05_28_drive_0000_sync 0000001158 l
|
31 |
+
2013_05_28_drive_0000_sync 0000001178 l
|
32 |
+
2013_05_28_drive_0000_sync 0000001198 l
|
33 |
+
2013_05_28_drive_0000_sync 0000001218 l
|
34 |
+
2013_05_28_drive_0000_sync 0000001238 l
|
35 |
+
2013_05_28_drive_0000_sync 0000001258 l
|
36 |
+
2013_05_28_drive_0000_sync 0000001278 l
|
37 |
+
2013_05_28_drive_0000_sync 0000001298 l
|
38 |
+
2013_05_28_drive_0000_sync 0000001338 l
|
39 |
+
2013_05_28_drive_0000_sync 0000001358 l
|
40 |
+
2013_05_28_drive_0000_sync 0000001378 l
|
41 |
+
2013_05_28_drive_0000_sync 0000001398 l
|
42 |
+
2013_05_28_drive_0000_sync 0000001418 l
|
43 |
+
2013_05_28_drive_0000_sync 0000001438 l
|
44 |
+
2013_05_28_drive_0000_sync 0000001458 l
|
45 |
+
2013_05_28_drive_0000_sync 0000001478 l
|
46 |
+
2013_05_28_drive_0000_sync 0000001498 l
|
47 |
+
2013_05_28_drive_0000_sync 0000001518 l
|
48 |
+
2013_05_28_drive_0000_sync 0000001538 l
|
49 |
+
2013_05_28_drive_0000_sync 0000001558 l
|
50 |
+
2013_05_28_drive_0000_sync 0000001578 l
|
51 |
+
2013_05_28_drive_0000_sync 0000001598 l
|
52 |
+
2013_05_28_drive_0000_sync 0000001618 l
|
53 |
+
2013_05_28_drive_0000_sync 0000001638 l
|
54 |
+
2013_05_28_drive_0000_sync 0000001658 l
|
55 |
+
2013_05_28_drive_0000_sync 0000001678 l
|
56 |
+
2013_05_28_drive_0000_sync 0000001698 l
|
57 |
+
2013_05_28_drive_0000_sync 0000001718 l
|
58 |
+
2013_05_28_drive_0000_sync 0000001738 l
|
59 |
+
2013_05_28_drive_0000_sync 0000001758 l
|
60 |
+
2013_05_28_drive_0000_sync 0000001778 l
|
61 |
+
2013_05_28_drive_0000_sync 0000001798 l
|
62 |
+
2013_05_28_drive_0000_sync 0000001818 l
|
63 |
+
2013_05_28_drive_0000_sync 0000001858 l
|
64 |
+
2013_05_28_drive_0000_sync 0000001878 l
|
65 |
+
2013_05_28_drive_0000_sync 0000001898 l
|
66 |
+
2013_05_28_drive_0000_sync 0000001918 l
|
67 |
+
2013_05_28_drive_0000_sync 0000001938 l
|
68 |
+
2013_05_28_drive_0000_sync 0000001958 l
|
69 |
+
2013_05_28_drive_0000_sync 0000001978 l
|
70 |
+
2013_05_28_drive_0000_sync 0000002725 l
|
71 |
+
2013_05_28_drive_0000_sync 0000002745 l
|
72 |
+
2013_05_28_drive_0000_sync 0000002765 l
|
73 |
+
2013_05_28_drive_0000_sync 0000002785 l
|
74 |
+
2013_05_28_drive_0000_sync 0000002805 l
|
75 |
+
2013_05_28_drive_0000_sync 0000002825 l
|
76 |
+
2013_05_28_drive_0000_sync 0000002845 l
|
77 |
+
2013_05_28_drive_0000_sync 0000002865 l
|
78 |
+
2013_05_28_drive_0000_sync 0000002885 l
|
79 |
+
2013_05_28_drive_0000_sync 0000002905 l
|
80 |
+
2013_05_28_drive_0000_sync 0000003266 l
|
81 |
+
2013_05_28_drive_0000_sync 0000003286 l
|
82 |
+
2013_05_28_drive_0000_sync 0000003306 l
|
83 |
+
2013_05_28_drive_0000_sync 0000003326 l
|
84 |
+
2013_05_28_drive_0000_sync 0000003346 l
|
85 |
+
2013_05_28_drive_0000_sync 0000003366 l
|
86 |
+
2013_05_28_drive_0000_sync 0000003386 l
|
87 |
+
2013_05_28_drive_0000_sync 0000003406 l
|
88 |
+
2013_05_28_drive_0000_sync 0000003426 l
|
89 |
+
2013_05_28_drive_0000_sync 0000003446 l
|
90 |
+
2013_05_28_drive_0000_sync 0000003466 l
|
91 |
+
2013_05_28_drive_0000_sync 0000003486 l
|
92 |
+
2013_05_28_drive_0000_sync 0000003506 l
|
93 |
+
2013_05_28_drive_0000_sync 0000003526 l
|
94 |
+
2013_05_28_drive_0000_sync 0000003546 l
|
95 |
+
2013_05_28_drive_0000_sync 0000003566 l
|
96 |
+
2013_05_28_drive_0000_sync 0000003586 l
|
97 |
+
2013_05_28_drive_0000_sync 0000003606 l
|
98 |
+
2013_05_28_drive_0000_sync 0000003626 l
|
99 |
+
2013_05_28_drive_0000_sync 0000003666 l
|
100 |
+
2013_05_28_drive_0000_sync 0000003686 l
|
101 |
+
2013_05_28_drive_0000_sync 0000003706 l
|
102 |
+
2013_05_28_drive_0000_sync 0000003726 l
|
103 |
+
2013_05_28_drive_0000_sync 0000003746 l
|
104 |
+
2013_05_28_drive_0000_sync 0000003766 l
|
105 |
+
2013_05_28_drive_0000_sync 0000003786 l
|
106 |
+
2013_05_28_drive_0000_sync 0000003806 l
|
107 |
+
2013_05_28_drive_0000_sync 0000003826 l
|
108 |
+
2013_05_28_drive_0000_sync 0000003846 l
|
109 |
+
2013_05_28_drive_0000_sync 0000003886 l
|
110 |
+
2013_05_28_drive_0000_sync 0000003906 l
|
111 |
+
2013_05_28_drive_0002_sync 0000004618 l
|
112 |
+
2013_05_28_drive_0002_sync 0000004638 l
|
113 |
+
2013_05_28_drive_0002_sync 0000004658 l
|
114 |
+
2013_05_28_drive_0002_sync 0000004678 l
|
115 |
+
2013_05_28_drive_0002_sync 0000004698 l
|
116 |
+
2013_05_28_drive_0002_sync 0000004718 l
|
117 |
+
2013_05_28_drive_0002_sync 0000004738 l
|
118 |
+
2013_05_28_drive_0002_sync 0000004758 l
|
119 |
+
2013_05_28_drive_0002_sync 0000004778 l
|
120 |
+
2013_05_28_drive_0002_sync 0000004798 l
|
121 |
+
2013_05_28_drive_0002_sync 0000004818 l
|
122 |
+
2013_05_28_drive_0002_sync 0000004838 l
|
123 |
+
2013_05_28_drive_0002_sync 0000004858 l
|
124 |
+
2013_05_28_drive_0002_sync 0000004878 l
|
125 |
+
2013_05_28_drive_0002_sync 0000004898 l
|
126 |
+
2013_05_28_drive_0002_sync 0000004918 l
|
127 |
+
2013_05_28_drive_0002_sync 0000004938 l
|
128 |
+
2013_05_28_drive_0002_sync 0000004958 l
|
129 |
+
2013_05_28_drive_0002_sync 0000004978 l
|
130 |
+
2013_05_28_drive_0002_sync 0000005006 l
|
131 |
+
2013_05_28_drive_0002_sync 0000005086 l
|
132 |
+
2013_05_28_drive_0002_sync 0000005106 l
|
133 |
+
2013_05_28_drive_0002_sync 0000005126 l
|
134 |
+
2013_05_28_drive_0002_sync 0000005146 l
|
135 |
+
2013_05_28_drive_0002_sync 0000005166 l
|
136 |
+
2013_05_28_drive_0002_sync 0000005186 l
|
137 |
+
2013_05_28_drive_0002_sync 0000005206 l
|
138 |
+
2013_05_28_drive_0002_sync 0000005226 l
|
139 |
+
2013_05_28_drive_0002_sync 0000005246 l
|
140 |
+
2013_05_28_drive_0002_sync 0000005266 l
|
141 |
+
2013_05_28_drive_0002_sync 0000005286 l
|
142 |
+
2013_05_28_drive_0002_sync 0000005306 l
|
143 |
+
2013_05_28_drive_0002_sync 0000005326 l
|
144 |
+
2013_05_28_drive_0002_sync 0000005366 l
|
145 |
+
2013_05_28_drive_0002_sync 0000005406 l
|
146 |
+
2013_05_28_drive_0002_sync 0000005426 l
|
147 |
+
2013_05_28_drive_0002_sync 0000005446 l
|
148 |
+
2013_05_28_drive_0002_sync 0000005466 l
|
149 |
+
2013_05_28_drive_0002_sync 0000005486 l
|
150 |
+
2013_05_28_drive_0002_sync 0000005506 l
|
151 |
+
2013_05_28_drive_0002_sync 0000005526 l
|
152 |
+
2013_05_28_drive_0002_sync 0000005546 l
|
153 |
+
2013_05_28_drive_0002_sync 0000005566 l
|
154 |
+
2013_05_28_drive_0002_sync 0000005586 l
|
155 |
+
2013_05_28_drive_0002_sync 0000005661 l
|
156 |
+
2013_05_28_drive_0002_sync 0000005782 l
|
157 |
+
2013_05_28_drive_0002_sync 0000005802 l
|
158 |
+
2013_05_28_drive_0002_sync 0000005822 l
|
159 |
+
2013_05_28_drive_0002_sync 0000006002 l
|
160 |
+
2013_05_28_drive_0002_sync 0000006062 l
|
161 |
+
2013_05_28_drive_0002_sync 0000006082 l
|
162 |
+
2013_05_28_drive_0002_sync 0000006102 l
|
163 |
+
2013_05_28_drive_0002_sync 0000006122 l
|
164 |
+
2013_05_28_drive_0002_sync 0000006222 l
|
165 |
+
2013_05_28_drive_0002_sync 0000006242 l
|
166 |
+
2013_05_28_drive_0002_sync 0000006262 l
|
167 |
+
2013_05_28_drive_0002_sync 0000006282 l
|
168 |
+
2013_05_28_drive_0002_sync 0000006362 l
|
169 |
+
2013_05_28_drive_0002_sync 0000006382 l
|
170 |
+
2013_05_28_drive_0002_sync 0000015219 l
|
171 |
+
2013_05_28_drive_0002_sync 0000015239 l
|
172 |
+
2013_05_28_drive_0002_sync 0000015259 l
|
173 |
+
2013_05_28_drive_0002_sync 0000015319 l
|
174 |
+
2013_05_28_drive_0003_sync 0000000182 l
|
175 |
+
2013_05_28_drive_0003_sync 0000000262 l
|
176 |
+
2013_05_28_drive_0004_sync 0000002922 l
|
177 |
+
2013_05_28_drive_0004_sync 0000003002 l
|
178 |
+
2013_05_28_drive_0004_sync 0000003022 l
|
179 |
+
2013_05_28_drive_0004_sync 0000003142 l
|
180 |
+
2013_05_28_drive_0004_sync 0000003162 l
|
181 |
+
2013_05_28_drive_0004_sync 0000003182 l
|
182 |
+
2013_05_28_drive_0004_sync 0000003202 l
|
183 |
+
2013_05_28_drive_0004_sync 0000003222 l
|
184 |
+
2013_05_28_drive_0004_sync 0000003242 l
|
185 |
+
2013_05_28_drive_0004_sync 0000003262 l
|
186 |
+
2013_05_28_drive_0004_sync 0000003282 l
|
187 |
+
2013_05_28_drive_0004_sync 0000003302 l
|
188 |
+
2013_05_28_drive_0004_sync 0000003322 l
|
189 |
+
2013_05_28_drive_0004_sync 0000003342 l
|
190 |
+
2013_05_28_drive_0004_sync 0000003362 l
|
191 |
+
2013_05_28_drive_0004_sync 0000003382 l
|
192 |
+
2013_05_28_drive_0004_sync 0000003402 l
|
193 |
+
2013_05_28_drive_0004_sync 0000003422 l
|
194 |
+
2013_05_28_drive_0004_sync 0000003442 l
|
195 |
+
2013_05_28_drive_0004_sync 0000003462 l
|
196 |
+
2013_05_28_drive_0004_sync 0000003542 l
|
197 |
+
2013_05_28_drive_0004_sync 0000003562 l
|
198 |
+
2013_05_28_drive_0004_sync 0000003582 l
|
199 |
+
2013_05_28_drive_0004_sync 0000003602 l
|
200 |
+
2013_05_28_drive_0004_sync 0000003622 l
|
201 |
+
2013_05_28_drive_0004_sync 0000003642 l
|
202 |
+
2013_05_28_drive_0004_sync 0000003662 l
|
203 |
+
2013_05_28_drive_0004_sync 0000003682 l
|
204 |
+
2013_05_28_drive_0004_sync 0000003797 l
|
205 |
+
2013_05_28_drive_0004_sync 0000003825 l
|
206 |
+
2013_05_28_drive_0004_sync 0000003845 l
|
207 |
+
2013_05_28_drive_0004_sync 0000003865 l
|
208 |
+
2013_05_28_drive_0004_sync 0000003885 l
|
209 |
+
2013_05_28_drive_0004_sync 0000003905 l
|
210 |
+
2013_05_28_drive_0004_sync 0000003925 l
|
211 |
+
2013_05_28_drive_0004_sync 0000003945 l
|
212 |
+
2013_05_28_drive_0004_sync 0000003965 l
|
213 |
+
2013_05_28_drive_0004_sync 0000004399 l
|
214 |
+
2013_05_28_drive_0004_sync 0000004439 l
|
215 |
+
2013_05_28_drive_0004_sync 0000004459 l
|
216 |
+
2013_05_28_drive_0004_sync 0000004479 l
|
217 |
+
2013_05_28_drive_0004_sync 0000004499 l
|
218 |
+
2013_05_28_drive_0004_sync 0000004539 l
|
219 |
+
2013_05_28_drive_0004_sync 0000004559 l
|
220 |
+
2013_05_28_drive_0004_sync 0000004596 l
|
221 |
+
2013_05_28_drive_0004_sync 0000004616 l
|
222 |
+
2013_05_28_drive_0004_sync 0000004636 l
|
223 |
+
2013_05_28_drive_0004_sync 0000004656 l
|
224 |
+
2013_05_28_drive_0004_sync 0000004696 l
|
225 |
+
2013_05_28_drive_0004_sync 0000004717 l
|
226 |
+
2013_05_28_drive_0004_sync 0000004737 l
|
227 |
+
2013_05_28_drive_0004_sync 0000004897 l
|
228 |
+
2013_05_28_drive_0004_sync 0000004917 l
|
229 |
+
2013_05_28_drive_0005_sync 0000004806 l
|
230 |
+
2013_05_28_drive_0005_sync 0000004826 l
|
231 |
+
2013_05_28_drive_0005_sync 0000004846 l
|
232 |
+
2013_05_28_drive_0005_sync 0000004866 l
|
233 |
+
2013_05_28_drive_0005_sync 0000004886 l
|
234 |
+
2013_05_28_drive_0005_sync 0000004906 l
|
235 |
+
2013_05_28_drive_0005_sync 0000004926 l
|
236 |
+
2013_05_28_drive_0005_sync 0000004946 l
|
237 |
+
2013_05_28_drive_0005_sync 0000004986 l
|
238 |
+
2013_05_28_drive_0005_sync 0000005006 l
|
239 |
+
2013_05_28_drive_0005_sync 0000005026 l
|
240 |
+
2013_05_28_drive_0005_sync 0000005046 l
|
241 |
+
2013_05_28_drive_0005_sync 0000005086 l
|
242 |
+
2013_05_28_drive_0005_sync 0000005157 l
|
243 |
+
2013_05_28_drive_0005_sync 0000005190 l
|
244 |
+
2013_05_28_drive_0005_sync 0000005210 l
|
245 |
+
2013_05_28_drive_0005_sync 0000005569 l
|
246 |
+
2013_05_28_drive_0005_sync 0000005589 l
|
247 |
+
2013_05_28_drive_0005_sync 0000005649 l
|
248 |
+
2013_05_28_drive_0005_sync 0000005669 l
|
249 |
+
2013_05_28_drive_0005_sync 0000005689 l
|
250 |
+
2013_05_28_drive_0005_sync 0000005709 l
|
251 |
+
2013_05_28_drive_0005_sync 0000005729 l
|
252 |
+
2013_05_28_drive_0005_sync 0000005749 l
|
253 |
+
2013_05_28_drive_0005_sync 0000005769 l
|
254 |
+
2013_05_28_drive_0005_sync 0000005809 l
|
255 |
+
2013_05_28_drive_0005_sync 0000005829 l
|
256 |
+
2013_05_28_drive_0005_sync 0000005883 l
|
257 |
+
2013_05_28_drive_0005_sync 0000005971 l
|
258 |
+
2013_05_28_drive_0005_sync 0000005991 l
|
259 |
+
2013_05_28_drive_0005_sync 0000006011 l
|
260 |
+
2013_05_28_drive_0005_sync 0000006031 l
|
261 |
+
2013_05_28_drive_0005_sync 0000006051 l
|
262 |
+
2013_05_28_drive_0005_sync 0000006071 l
|
263 |
+
2013_05_28_drive_0005_sync 0000006131 l
|
264 |
+
2013_05_28_drive_0005_sync 0000006151 l
|
265 |
+
2013_05_28_drive_0005_sync 0000006211 l
|
266 |
+
2013_05_28_drive_0005_sync 0000006251 l
|
267 |
+
2013_05_28_drive_0005_sync 0000006271 l
|
268 |
+
2013_05_28_drive_0006_sync 0000000130 l
|
269 |
+
2013_05_28_drive_0006_sync 0000000150 l
|
270 |
+
2013_05_28_drive_0006_sync 0000000170 l
|
271 |
+
2013_05_28_drive_0006_sync 0000000210 l
|
272 |
+
2013_05_28_drive_0006_sync 0000000230 l
|
273 |
+
2013_05_28_drive_0006_sync 0000000250 l
|
274 |
+
2013_05_28_drive_0006_sync 0000000290 l
|
275 |
+
2013_05_28_drive_0006_sync 0000000310 l
|
276 |
+
2013_05_28_drive_0006_sync 0000000330 l
|
277 |
+
2013_05_28_drive_0006_sync 0000000350 l
|
278 |
+
2013_05_28_drive_0006_sync 0000000370 l
|
279 |
+
2013_05_28_drive_0006_sync 0000000430 l
|
280 |
+
2013_05_28_drive_0006_sync 0000000450 l
|
281 |
+
2013_05_28_drive_0006_sync 0000000470 l
|
282 |
+
2013_05_28_drive_0006_sync 0000000490 l
|
283 |
+
2013_05_28_drive_0006_sync 0000000510 l
|
284 |
+
2013_05_28_drive_0006_sync 0000000551 l
|
285 |
+
2013_05_28_drive_0006_sync 0000000622 l
|
286 |
+
2013_05_28_drive_0006_sync 0000000642 l
|
287 |
+
2013_05_28_drive_0006_sync 0000000662 l
|
288 |
+
2013_05_28_drive_0006_sync 0000000682 l
|
289 |
+
2013_05_28_drive_0006_sync 0000000702 l
|
290 |
+
2013_05_28_drive_0006_sync 0000000722 l
|
291 |
+
2013_05_28_drive_0006_sync 0000000742 l
|
292 |
+
2013_05_28_drive_0006_sync 0000000822 l
|
293 |
+
2013_05_28_drive_0006_sync 0000000842 l
|
294 |
+
2013_05_28_drive_0006_sync 0000000862 l
|
295 |
+
2013_05_28_drive_0006_sync 0000000882 l
|
296 |
+
2013_05_28_drive_0006_sync 0000000902 l
|
297 |
+
2013_05_28_drive_0006_sync 0000000922 l
|
298 |
+
2013_05_28_drive_0006_sync 0000000962 l
|
299 |
+
2013_05_28_drive_0006_sync 0000000982 l
|
300 |
+
2013_05_28_drive_0006_sync 0000001062 l
|
301 |
+
2013_05_28_drive_0006_sync 0000001082 l
|
302 |
+
2013_05_28_drive_0006_sync 0000001102 l
|
303 |
+
2013_05_28_drive_0006_sync 0000001142 l
|
304 |
+
2013_05_28_drive_0006_sync 0000001162 l
|
305 |
+
2013_05_28_drive_0006_sync 0000001182 l
|
306 |
+
2013_05_28_drive_0006_sync 0000001202 l
|
307 |
+
2013_05_28_drive_0006_sync 0000002304 l
|
308 |
+
2013_05_28_drive_0006_sync 0000002324 l
|
309 |
+
2013_05_28_drive_0006_sync 0000002344 l
|
310 |
+
2013_05_28_drive_0006_sync 0000002364 l
|
311 |
+
2013_05_28_drive_0006_sync 0000002384 l
|
312 |
+
2013_05_28_drive_0006_sync 0000002404 l
|
313 |
+
2013_05_28_drive_0006_sync 0000002424 l
|
314 |
+
2013_05_28_drive_0006_sync 0000002444 l
|
315 |
+
2013_05_28_drive_0006_sync 0000002464 l
|
316 |
+
2013_05_28_drive_0006_sync 0000002484 l
|
317 |
+
2013_05_28_drive_0006_sync 0000002592 l
|
318 |
+
2013_05_28_drive_0006_sync 0000002613 l
|
319 |
+
2013_05_28_drive_0006_sync 0000002633 l
|
320 |
+
2013_05_28_drive_0006_sync 0000002673 l
|
321 |
+
2013_05_28_drive_0006_sync 0000002693 l
|
322 |
+
2013_05_28_drive_0006_sync 0000002733 l
|
323 |
+
2013_05_28_drive_0006_sync 0000002753 l
|
324 |
+
2013_05_28_drive_0006_sync 0000002773 l
|
325 |
+
2013_05_28_drive_0006_sync 0000002793 l
|
326 |
+
2013_05_28_drive_0006_sync 0000009236 l
|
327 |
+
2013_05_28_drive_0006_sync 0000009256 l
|
328 |
+
2013_05_28_drive_0006_sync 0000009296 l
|
329 |
+
2013_05_28_drive_0006_sync 0000009316 l
|
330 |
+
2013_05_28_drive_0006_sync 0000009336 l
|
331 |
+
2013_05_28_drive_0006_sync 0000009376 l
|
332 |
+
2013_05_28_drive_0006_sync 0000009396 l
|
333 |
+
2013_05_28_drive_0006_sync 0000009416 l
|
334 |
+
2013_05_28_drive_0006_sync 0000009456 l
|
335 |
+
2013_05_28_drive_0006_sync 0000009476 l
|
336 |
+
2013_05_28_drive_0006_sync 0000009496 l
|
337 |
+
2013_05_28_drive_0006_sync 0000009516 l
|
338 |
+
2013_05_28_drive_0006_sync 0000009536 l
|
339 |
+
2013_05_28_drive_0007_sync 0000000019 l
|
340 |
+
2013_05_28_drive_0007_sync 0000000039 l
|
341 |
+
2013_05_28_drive_0007_sync 0000000059 l
|
342 |
+
2013_05_28_drive_0007_sync 0000000079 l
|
343 |
+
2013_05_28_drive_0007_sync 0000000099 l
|
344 |
+
2013_05_28_drive_0007_sync 0000000119 l
|
345 |
+
2013_05_28_drive_0007_sync 0000000139 l
|
346 |
+
2013_05_28_drive_0007_sync 0000000159 l
|
347 |
+
2013_05_28_drive_0007_sync 0000000179 l
|
348 |
+
2013_05_28_drive_0007_sync 0000000199 l
|
349 |
+
2013_05_28_drive_0007_sync 0000000219 l
|
350 |
+
2013_05_28_drive_0007_sync 0000000439 l
|
351 |
+
2013_05_28_drive_0009_sync 0000001030 l
|
352 |
+
2013_05_28_drive_0009_sync 0000001050 l
|
353 |
+
2013_05_28_drive_0009_sync 0000001070 l
|
354 |
+
2013_05_28_drive_0009_sync 0000001090 l
|
355 |
+
2013_05_28_drive_0009_sync 0000001110 l
|
356 |
+
2013_05_28_drive_0009_sync 0000001130 l
|
357 |
+
2013_05_28_drive_0009_sync 0000001150 l
|
358 |
+
2013_05_28_drive_0009_sync 0000001170 l
|
359 |
+
2013_05_28_drive_0009_sync 0000001190 l
|
360 |
+
2013_05_28_drive_0009_sync 0000001210 l
|
361 |
+
2013_05_28_drive_0009_sync 0000001230 l
|
362 |
+
2013_05_28_drive_0009_sync 0000001250 l
|
363 |
+
2013_05_28_drive_0009_sync 0000001270 l
|
364 |
+
2013_05_28_drive_0009_sync 0000001290 l
|
365 |
+
2013_05_28_drive_0009_sync 0000001310 l
|
366 |
+
2013_05_28_drive_0009_sync 0000001330 l
|
367 |
+
2013_05_28_drive_0009_sync 0000001350 l
|
368 |
+
2013_05_28_drive_0009_sync 0000001370 l
|
369 |
+
2013_05_28_drive_0009_sync 0000004495 l
|
370 |
+
2013_05_28_drive_0009_sync 0000004555 l
|
371 |
+
2013_05_28_drive_0009_sync 0000004575 l
|
372 |
+
2013_05_28_drive_0009_sync 0000004595 l
|
373 |
+
2013_05_28_drive_0009_sync 0000004615 l
|
374 |
+
2013_05_28_drive_0009_sync 0000004635 l
|
375 |
+
2013_05_28_drive_0009_sync 0000004655 l
|
376 |
+
2013_05_28_drive_0009_sync 0000004675 l
|
377 |
+
2013_05_28_drive_0009_sync 0000004695 l
|
378 |
+
2013_05_28_drive_0009_sync 0000004719 l
|
379 |
+
2013_05_28_drive_0009_sync 0000004845 l
|
380 |
+
2013_05_28_drive_0009_sync 0000004869 l
|
381 |
+
2013_05_28_drive_0009_sync 0000004889 l
|
382 |
+
2013_05_28_drive_0009_sync 0000005184 l
|
383 |
+
2013_05_28_drive_0009_sync 0000005204 l
|
384 |
+
2013_05_28_drive_0009_sync 0000005224 l
|
385 |
+
2013_05_28_drive_0009_sync 0000005244 l
|
386 |
+
2013_05_28_drive_0009_sync 0000005264 l
|
387 |
+
2013_05_28_drive_0009_sync 0000005284 l
|
388 |
+
2013_05_28_drive_0009_sync 0000005304 l
|
389 |
+
2013_05_28_drive_0009_sync 0000005324 l
|
390 |
+
2013_05_28_drive_0009_sync 0000005344 l
|
391 |
+
2013_05_28_drive_0009_sync 0000005364 l
|
392 |
+
2013_05_28_drive_0009_sync 0000005384 l
|
393 |
+
2013_05_28_drive_0009_sync 0000005404 l
|
394 |
+
2013_05_28_drive_0009_sync 0000005424 l
|
395 |
+
2013_05_28_drive_0009_sync 0000005444 l
|
396 |
+
2013_05_28_drive_0009_sync 0000005464 l
|
397 |
+
2013_05_28_drive_0009_sync 0000005484 l
|
398 |
+
2013_05_28_drive_0009_sync 0000005504 l
|
399 |
+
2013_05_28_drive_0009_sync 0000005524 l
|
400 |
+
2013_05_28_drive_0009_sync 0000005544 l
|
401 |
+
2013_05_28_drive_0009_sync 0000005564 l
|
402 |
+
2013_05_28_drive_0009_sync 0000005584 l
|
403 |
+
2013_05_28_drive_0009_sync 0000005624 l
|
404 |
+
2013_05_28_drive_0009_sync 0000005644 l
|
405 |
+
2013_05_28_drive_0009_sync 0000005664 l
|
406 |
+
2013_05_28_drive_0009_sync 0000005684 l
|
407 |
+
2013_05_28_drive_0009_sync 0000005704 l
|
408 |
+
2013_05_28_drive_0009_sync 0000006291 l
|
409 |
+
2013_05_28_drive_0009_sync 0000006311 l
|
410 |
+
2013_05_28_drive_0009_sync 0000006351 l
|
411 |
+
2013_05_28_drive_0009_sync 0000006371 l
|
412 |
+
2013_05_28_drive_0009_sync 0000006391 l
|
413 |
+
2013_05_28_drive_0009_sync 0000006411 l
|
414 |
+
2013_05_28_drive_0009_sync 0000006431 l
|
415 |
+
2013_05_28_drive_0009_sync 0000006451 l
|
416 |
+
2013_05_28_drive_0009_sync 0000006471 l
|
417 |
+
2013_05_28_drive_0009_sync 0000006491 l
|
418 |
+
2013_05_28_drive_0009_sync 0000006511 l
|
419 |
+
2013_05_28_drive_0010_sync 0000001896 l
|
420 |
+
2013_05_28_drive_0010_sync 0000001916 l
|
421 |
+
2013_05_28_drive_0010_sync 0000001936 l
|
422 |
+
2013_05_28_drive_0010_sync 0000001956 l
|
423 |
+
2013_05_28_drive_0010_sync 0000001976 l
|
424 |
+
2013_05_28_drive_0010_sync 0000001996 l
|
425 |
+
2013_05_28_drive_0010_sync 0000002016 l
|
426 |
+
2013_05_28_drive_0010_sync 0000002036 l
|
427 |
+
2013_05_28_drive_0010_sync 0000002056 l
|
428 |
+
2013_05_28_drive_0010_sync 0000002076 l
|
429 |
+
2013_05_28_drive_0010_sync 0000002096 l
|
430 |
+
2013_05_28_drive_0010_sync 0000002145 l
|
431 |
+
2013_05_28_drive_0010_sync 0000002165 l
|
432 |
+
2013_05_28_drive_0010_sync 0000002185 l
|
433 |
+
2013_05_28_drive_0010_sync 0000002205 l
|
434 |
+
2013_05_28_drive_0010_sync 0000002225 l
|
435 |
+
2013_05_28_drive_0010_sync 0000002615 l
|
436 |
+
2013_05_28_drive_0010_sync 0000002635 l
|
437 |
+
2013_05_28_drive_0010_sync 0000002655 l
|
438 |
+
2013_05_28_drive_0010_sync 0000002675 l
|
439 |
+
2013_05_28_drive_0010_sync 0000002695 l
|
440 |
+
2013_05_28_drive_0010_sync 0000002755 l
|
441 |
+
2013_05_28_drive_0010_sync 0000002795 l
|
442 |
+
2013_05_28_drive_0010_sync 0000002815 l
|
443 |
+
2013_05_28_drive_0010_sync 0000002835 l
|
444 |
+
2013_05_28_drive_0010_sync 0000002855 l
|
445 |
+
2013_05_28_drive_0010_sync 0000002875 l
|
446 |
+
2013_05_28_drive_0010_sync 0000002895 l
|
datasets/kitti_360/splits/seg/train_files.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|