#!/usr/bin/python # from __future__ import print_function, absolute_import, division import glob import json import os import struct import xml.etree.ElementTree as ET from collections import defaultdict from collections import namedtuple import numpy as np from matplotlib import cm from skimage import io, filters # get current date and time # A point in a polygon Point = namedtuple('Point', ['x', 'y']) from abc import ABCMeta from datasets.kitti_360.labels import labels, id2label, kittiId2label, name2label MAX_N = 1000 def local2global(semanticId, instanceId): globalId = semanticId*MAX_N + instanceId if isinstance(globalId, np.ndarray): return globalId.astype(np.int) else: return int(globalId) def global2local(globalId): semanticId = globalId // MAX_N instanceId = globalId % MAX_N if isinstance(globalId, np.ndarray): return semanticId.astype(np.int), instanceId.astype(np.int) else: return int(semanticId), int(instanceId) annotation2global = defaultdict() # Abstract base class for annotation objects class KITTI360Object: __metaclass__ = ABCMeta def __init__(self): # the label self.label = "" # colormap self.cmap = cm.get_cmap('Set1') self.cmap_length = 9 def getColor(self, idx): if idx==0: return np.array([0,0,0]) return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255. def assignColor(self): if self.semanticId>=0: self.semanticColor = id2label[self.semanticId].color if self.instanceId>0: self.instanceColor = self.getColor(self.instanceId) else: self.instanceColor = self.semanticColor # Class that contains the information of a single annotated object as 3D bounding box class KITTI360Bbox3D(KITTI360Object): # Constructor def __init__(self): KITTI360Object.__init__(self) # the polygon as list of points self.vertices = [] self.faces = [] self.lines = [[0,5],[1,4],[2,7],[3,6], [0,1],[1,3],[3,2],[2,0], [4,5],[5,7],[7,6],[6,4]] # the ID of the corresponding object self.semanticId = -1 self.instanceId = -1 self.annotationId = -1 # the window that contains the bbox self.start_frame = -1 self.end_frame = -1 # timestamp of the bbox (-1 if statis) self.timestamp = -1 # projected vertices self.vertices_proj = None self.meshes = [] # name self.name = '' def __str__(self): return self.name def generateMeshes(self): self.meshes = [] if self.vertices_proj: for fidx in range(self.faces.shape[0]): self.meshes.append( [ Point(self.vertices_proj[0][int(x)], self.vertices_proj[1][int(x)]) for x in self.faces[fidx]] ) def parseOpencvMatrix(self, node): rows = int(node.find('rows').text) cols = int(node.find('cols').text) data = node.find('data').text.split(' ') mat = [] for d in data: d = d.replace('\n', '') if len(d)<1: continue mat.append(float(d)) mat = np.reshape(mat, [rows, cols]) return mat def parseVertices(self, child): transform = self.parseOpencvMatrix(child.find('transform')) R = transform[:3,:3] T = transform[:3,3] vertices = self.parseOpencvMatrix(child.find('vertices')) faces = self.parseOpencvMatrix(child.find('faces')) vertices = np.matmul(R, vertices.transpose()).transpose() + T self.vertices = vertices self.faces = faces self.R = R self.T = T def parseBbox(self, child): semanticIdKITTI = int(child.find('semanticId').text) self.semanticId = kittiId2label[semanticIdKITTI].id self.instanceId = int(child.find('instanceId').text) self.name = kittiId2label[semanticIdKITTI].name self.start_frame = int(child.find('start_frame').text) self.end_frame = int(child.find('end_frame').text) self.timestamp = int(child.find('timestamp').text) self.annotationId = int(child.find('index').text) + 1 global annotation2global annotation2global[self.annotationId] = local2global(self.semanticId, self.instanceId) self.parseVertices(child) def parseStuff(self, child): classmap = {'driveway': 'parking', 'ground': 'terrain', 'unknownGround': 'ground', 'railtrack': 'rail track', 'bigPole': 'pole', 'unknownObject': 'unknown object', 'smallPole': 'smallpole', 'trafficSign': 'traffic sign', 'trashbin': 'trash bin', 'guardrail': 'guard rail', 'trafficLight': 'traffic light', 'pedestrian': 'person', 'vendingmachine': 'vending machine', 'unknownConstruction': 'unknown construction', 'unknownVehicle': 'unknown vehicle'} label = child.find('label').text if label in classmap.keys(): label = classmap[label] self.start_frame = int(child.find('start_frame').text) self.end_frame = int(child.find('end_frame').text) self.timestamp = int(child.find('timestamp').text) self.semanticId = name2label[label].id self.name = label self.parseVertices(child) # Class that contains the information of the point cloud a single frame class KITTI360Point3D(KITTI360Object): # Constructor def __init__(self): KITTI360Object.__init__(self) self.vertices = [] self.vertices_proj = None # the ID of the corresponding object self.semanticId = -1 self.instanceId = -1 self.annotationId = -1 # name self.name = '' # color self.semanticColor = None self.instanceColor = None def __str__(self): return self.name def generateMeshes(self): pass # The annotation of a whole image, including semantic and instance class Annotation2D: # Constructor def __init__(self, colormap='Set1'): # the width of that image and thus of the label image self.imgWidth = 0 # the height of that image and thus of the label image self.imgHeight = 0 self.instanceId = None self.semanticId = None self.instanceImg = None self.semanticImg = None # savedId = semanticId*N + instanceId self.N = 1000 # colormap self.cmap = cm.get_cmap(colormap) if colormap == 'Set1': self.cmap_length = 9 else: raise "Colormap length need to be specified!" def getColor(self, idx): if idx==0: return np.array([0,0,0]) return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255. # Load confidence map def loadConfidence(self, imgPath): self.confidenceMap = io.imread(imgPath) self.confidenceMap = np.asarray(self.confidenceMap).astype(np.float)/255. # Load instance id def loadInstance(self, imgPath, gtType='instance', toImg=True, contourType='instance', semanticCt=True, instanceCt=True): instanceId = io.imread(imgPath) self.instanceId = np.asarray( instanceId % self.N ) self.semanticId = np.asarray( instanceId // self.N ) if not toImg: return if gtType=='semantic': self.toSemanticImage() elif gtType=='instance': self.toInstanceImage() if semanticCt or instanceCt: self.getBoundary() if gtType=='semantic' and semanticCt: boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=False) self.semanticImg = self.semanticImg * (1-boundaryImg) + \ np.ones_like(self.semanticImg) * boundaryImg * 255 if gtType=='instance' and instanceCt: boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=True) self.instanceImg = self.instanceImg * (1-boundaryImg) + \ np.ones_like(self.instanceImg) * boundaryImg * 255 def toSemanticImage(self): self.semanticImg = np.zeros((self.semanticId.size, 3)) for label in labels: mask = self.semanticId==label.id mask = mask.flatten() self.semanticImg[mask] = np.asarray(label.color) self.semanticImg = self.semanticImg.reshape(*self.semanticId.shape, 3) def toInstanceImage(self): self.instanceImg = np.zeros((self.instanceId.size, 3)) uniqueId = np.unique(self.instanceId) for uid in uniqueId: mask = self.instanceId==uid mask = mask.flatten() self.instanceImg[mask] = np.asarray(self.getColor(uid)) self.instanceImg = self.instanceImg.reshape(*self.instanceId.shape, 3) def getBoundary(self): # semantic contours uniqueId = np.unique(self.semanticId) self.semanticContours = {} for uid in uniqueId: mask = (self.semanticId==uid).astype(np.uint8) * 255 mask_filter = filters.laplace(mask) self.semanticContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2) # instance contours globalId = local2global(self.semanticId, self.instanceId) uniqueId = np.unique(globalId) self.instanceContours = {} for uid in uniqueId: mask = (globalId==uid).astype(np.uint8) * 255 mask_filter = filters.laplace(mask) self.instanceContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2) def toBoundaryImage(self, contourType='instance', instanceOnly=True): if contourType=='semantic': contours = self.semanticContours assert(instanceOnly==False) elif contourType=='instance': contours = self.instanceContours else: raise ("Contour type can only be 'semantic' or 'instance'!") if not instanceOnly: boundaryImg = [contours[k] for k in contours.keys()] else: boundaryImg = [contours[k] for k in contours.keys() if global2local(k)[1]!=0] boundaryImg = np.sum(np.asarray(boundaryImg), axis=0) boundaryImg = boundaryImg>0 return boundaryImg class Annotation2DInstance: def __init__(self, gtPath, cam=0): # trace the instances in all images self.instanceDict = defaultdict(list) # instanceDictCached = os.path.join(gtPath, 'instanceDict.json') print(instanceDictCached) if os.path.isfile(instanceDictCached) and os.path.getsize(instanceDictCached)>0: cachedDict = json.load( open(instanceDictCached) ) for k,v in cachedDict.items(): self.instanceDict[int(k)] = v return obj = Annotation2D() gtPaths = glob.glob( os.path.join(gtPath, 'instance', '*.png') ) print (f'Found {len(gtPaths)} label images...') for i,imgPath in enumerate(gtPaths): if i%1000==0: print(f'Processed {i}/{len(gtPaths)} label images...') obj.loadInstance(imgPath, toImg=False) globalId = local2global(obj.semanticId, obj.instanceId) globalIdUnique = np.unique(globalId) for idx in globalIdUnique: self.instanceDict[int(idx)].append(os.path.basename(imgPath)) json.dump( self.instanceDict, open(instanceDictCached, 'w')) # returns the paths that contains the specific instance def __call__(self, semanticId, instanceId): globalId = local2global(semanticId, instanceId) return self.instanceDict[globalId] # Meta class for KITTI360Bbox3D class Annotation3D: # Constructor def __init__(self, labelDir='', sequence=''): labelPath = glob.glob(os.path.join(labelDir, '*', '%s.xml' % sequence)) # train or test if len(labelPath)!=1: raise RuntimeError('%s does not exist! Please specify KITTI360_DATASET in your environment path.' % labelPath) else: labelPath = labelPath[0] print('Loading %s...' % labelPath) self.init_instance(labelPath) def init_instance(self, labelPath): # load annotation tree = ET.parse(labelPath) root = tree.getroot() self.objects = defaultdict(dict) self.num_bbox = 0 for child in root: if child.find('transform') is None: continue obj = KITTI360Bbox3D() obj.parseBbox(child) globalId = local2global(obj.semanticId, obj.instanceId) self.objects[globalId][obj.timestamp] = obj self.num_bbox+=1 globalIds = np.asarray(list(self.objects.keys())) semanticIds, instanceIds = global2local(globalIds) for label in labels: if label.hasInstances: print(f'{label.name:<30}:\t {(semanticIds==label.id).sum()}') print(f'Loaded {len(globalIds)} instances') print(f'Loaded {self.num_bbox} boxes') def __call__(self, semanticId, instanceId, timestamp=None): globalId = local2global(semanticId, instanceId) if globalId in self.objects.keys(): # static object if len(self.objects[globalId].keys())==1: if -1 in self.objects[globalId].keys(): return self.objects[globalId][-1] else: return None # dynamic object else: return self.objects[globalId][timestamp] else: return None class Annotation3DPly: # parse fused 3D point cloud def __init__(self, labelDir='', sequence='', isLabeled=True, isDynamic=False, showStatic=True): if isLabeled and not isDynamic: # x y z r g b semanticId instanceId isVisible confidence self.fmt = '=fffBBBiiBf' self.fmt_len = 28 elif isLabeled and isDynamic: # x y z r g b semanticId instanceId isVisible timestamp confidence self.fmt = '=fffBBBiiBif' self.fmt_len = 32 elif not isLabeled and not isDynamic: # x y z r g b self.fmt = '=fffBBBB' self.fmt_len = 16 else: raise RuntimeError('Invalid binary format!') # True for training data, False for testing data self.isLabeled = isLabeled # True for dynamic data, False for static data self.isDynamic = isDynamic # True for inspecting static data, False for inspecting dynamic data self.showStatic = showStatic pcdFolder = 'static' if self.showStatic else 'dynamic' trainTestDir = 'train' if self.isLabeled else 'test' self.pcdFileList = sorted(glob.glob(os.path.join(labelDir, trainTestDir, sequence, pcdFolder, '*.ply'))) print('Found %d ply files in %s' % (len(self.pcdFileList), sequence)) def readBinaryPly(self, pcdFile, n_pts=None): with open(pcdFile, 'rb') as f: plyData = f.readlines() headLine = plyData.index(b'end_header\n')+1 plyData = plyData[headLine:] plyData = b"".join(plyData) n_pts_loaded = len(plyData)/self.fmt_len # sanity check if n_pts: assert(n_pts_loaded==n_pts) n_pts_loaded = int(n_pts_loaded) data = [] for i in range(n_pts_loaded): pts=struct.unpack(self.fmt, plyData[i*self.fmt_len:(i+1)*self.fmt_len]) data.append(pts) data=np.asarray(data) return data def writeBinaryPly(self, pcdFile, data): fmt = '=fffBBBiiB' fmt_len = 24 n_pts = data.shape[0] with open(pcdFile, 'wb') as f: f.write(b'ply\n') f.write(b'format binary_little_endian 1.0\n') f.write(b'comment author Yiyi Liao\n') f.write(b'element vertex %d\n' % n_pts) f.write(b'property float x\n') f.write(b'property float y\n') f.write(b'property float z\n') f.write(b'property uchar red\n') f.write(b'property uchar green\n') f.write(b'property uchar blue\n') f.write(b'property int semantic\n') class Annotation3DInstance(object): instance_id = 0 labelId = 0 vert_count = 0 med_dist = -1 dist_conf = 0.0 def __init__(self, mesh_vert_instances, instance_id): if (instance_id == -1): return self.instance_id = int(instance_id) self.labelId = int(self.get_labelId(instance_id)) self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id)) def get_labelId(self, instance_id): return int(instance_id // 1000) def get_instance_verts(self, mesh_vert_instances, instance_id): return (mesh_vert_instances == instance_id).sum() def to_json(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) def to_dict(self): dict = {} dict["instance_id"] = self.instance_id dict["labelId"] = self.labelId dict["vert_count"] = self.vert_count dict["med_dist"] = self.med_dist dict["dist_conf"] = self.dist_conf return dict def from_json(self, data): self.instance_id = int(data["instance_id"]) self.labelId = int(data["labelId"]) self.vert_count = int(data["vert_count"]) if ("med_dist" in data): self.med_dist = float(data["med_dist"]) self.dist_conf = float(data["dist_conf"]) def __str__(self): return "("+str(self.instance_id)+")" # a dummy example if __name__ == "__main__": ann = Annotation3D()