Spaces:
Runtime error
Runtime error
Update pages/task3.py
Browse files- pages/task3.py +88 -88
pages/task3.py
CHANGED
|
@@ -1,89 +1,89 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 3 |
-
import time
|
| 4 |
-
|
| 5 |
-
def generate_text(model, tokenizer, prompt, max_length, num_generations, temperature):
|
| 6 |
-
generated_texts = []
|
| 7 |
-
|
| 8 |
-
for _ in range(num_generations):
|
| 9 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 10 |
-
output = model.generate(
|
| 11 |
-
input_ids,
|
| 12 |
-
max_length=max_length,
|
| 13 |
-
temperature=temperature,
|
| 14 |
-
num_return_sequences=1
|
| 15 |
-
)
|
| 16 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 17 |
-
generated_texts.append(generated_text)
|
| 18 |
-
|
| 19 |
-
return generated_texts
|
| 20 |
-
|
| 21 |
-
button_style = """
|
| 22 |
-
<style>
|
| 23 |
-
.center-align {
|
| 24 |
-
display: flex;
|
| 25 |
-
justify-content: center;
|
| 26 |
-
|
| 27 |
-
</style>
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
DEVICE = 'cpu'
|
| 31 |
-
|
| 32 |
-
# Загрузка пользовательской модели и токенизатора (замените на свои пути и модель)
|
| 33 |
-
# model_path = "sberbank-ai/rugpt3small_based_on_gpt2"
|
| 34 |
-
# tokenizer_path = "sberbank-ai/rugpt3small_based_on_gpt2"
|
| 35 |
-
|
| 36 |
-
# model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)
|
| 37 |
-
# tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path)
|
| 38 |
-
|
| 39 |
-
st.markdown("""
|
| 40 |
-
<style>
|
| 41 |
-
section[data-testid="stSidebar"][aria-expanded="true"]{
|
| 42 |
-
display: none;
|
| 43 |
-
}
|
| 44 |
-
</style>
|
| 45 |
-
""", unsafe_allow_html=True)
|
| 46 |
-
|
| 47 |
-
st.write("## Text generator")
|
| 48 |
-
st.page_link("
|
| 49 |
-
st.markdown(
|
| 50 |
-
"""
|
| 51 |
-
This streamlit-app can generate text using your prompt
|
| 52 |
-
"""
|
| 53 |
-
)
|
| 54 |
-
# Ввод пользовательского prompt
|
| 55 |
-
prompt = st.text_area("Enter your prompt:")
|
| 56 |
-
|
| 57 |
-
# Параметры генерации
|
| 58 |
-
max_length = st.slider("Max length of generated text:", min_value=10, max_value=500, value=100, step=10)
|
| 59 |
-
num_generations = st.slider("Number of generations:", min_value=1, max_value=10, value=3, step=1)
|
| 60 |
-
temperature = st.slider("Temperature:", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
|
| 61 |
-
try:
|
| 62 |
-
if st.button("Generate text"):
|
| 63 |
-
start_time = time.time()
|
| 64 |
-
generated_texts = generate_text(model, tokenizer, prompt, max_length, num_generations, temperature)
|
| 65 |
-
end_time = time.time()
|
| 66 |
-
|
| 67 |
-
st.subheader("Сгенерированный текст:")
|
| 68 |
-
for i, text in enumerate(generated_texts, start=1):
|
| 69 |
-
st.write(f"Генерация {i}:\n{text}")
|
| 70 |
-
|
| 71 |
-
generation_time = end_time - start_time
|
| 72 |
-
st.write(f"\nВремя генерации: {generation_time:.2f} секунд")
|
| 73 |
-
|
| 74 |
-
st.markdown(button_style, unsafe_allow_html=True) # Применяем стиль к кнопке
|
| 75 |
-
st.markdown(
|
| 76 |
-
"""
|
| 77 |
-
<style>
|
| 78 |
-
div[data-baseweb="textarea"] {
|
| 79 |
-
border: 2px solid #3498db; /* Цвет границы */
|
| 80 |
-
border-radius: 5px; /* Закругленные углы */
|
| 81 |
-
background-color: #ecf0f1; /* Цвет фона */
|
| 82 |
-
padding: 10px; /* Поля вокруг текстового поля */
|
| 83 |
-
}
|
| 84 |
-
</style>
|
| 85 |
-
""",
|
| 86 |
-
unsafe_allow_html=True,
|
| 87 |
-
)
|
| 88 |
-
except:
|
| 89 |
st.write('Модель в разработке ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ')
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
def generate_text(model, tokenizer, prompt, max_length, num_generations, temperature):
|
| 6 |
+
generated_texts = []
|
| 7 |
+
|
| 8 |
+
for _ in range(num_generations):
|
| 9 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 10 |
+
output = model.generate(
|
| 11 |
+
input_ids,
|
| 12 |
+
max_length=max_length,
|
| 13 |
+
temperature=temperature,
|
| 14 |
+
num_return_sequences=1
|
| 15 |
+
)
|
| 16 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 17 |
+
generated_texts.append(generated_text)
|
| 18 |
+
|
| 19 |
+
return generated_texts
|
| 20 |
+
|
| 21 |
+
button_style = """
|
| 22 |
+
<style>
|
| 23 |
+
.center-align {
|
| 24 |
+
display: flex;
|
| 25 |
+
justify-content: center;
|
| 26 |
+
|
| 27 |
+
</style>
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
DEVICE = 'cpu'
|
| 31 |
+
|
| 32 |
+
# Загрузка пользовательской модели и токенизатора (замените на свои пути и модель)
|
| 33 |
+
# model_path = "sberbank-ai/rugpt3small_based_on_gpt2"
|
| 34 |
+
# tokenizer_path = "sberbank-ai/rugpt3small_based_on_gpt2"
|
| 35 |
+
|
| 36 |
+
# model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)
|
| 37 |
+
# tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path)
|
| 38 |
+
|
| 39 |
+
st.markdown("""
|
| 40 |
+
<style>
|
| 41 |
+
section[data-testid="stSidebar"][aria-expanded="true"]{
|
| 42 |
+
display: none;
|
| 43 |
+
}
|
| 44 |
+
</style>
|
| 45 |
+
""", unsafe_allow_html=True)
|
| 46 |
+
|
| 47 |
+
st.write("## Text generator")
|
| 48 |
+
st.page_link("app.py", label="Home", icon='🏠')
|
| 49 |
+
st.markdown(
|
| 50 |
+
"""
|
| 51 |
+
This streamlit-app can generate text using your prompt
|
| 52 |
+
"""
|
| 53 |
+
)
|
| 54 |
+
# Ввод пользовательского prompt
|
| 55 |
+
prompt = st.text_area("Enter your prompt:")
|
| 56 |
+
|
| 57 |
+
# Параметры генерации
|
| 58 |
+
max_length = st.slider("Max length of generated text:", min_value=10, max_value=500, value=100, step=10)
|
| 59 |
+
num_generations = st.slider("Number of generations:", min_value=1, max_value=10, value=3, step=1)
|
| 60 |
+
temperature = st.slider("Temperature:", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
|
| 61 |
+
try:
|
| 62 |
+
if st.button("Generate text"):
|
| 63 |
+
start_time = time.time()
|
| 64 |
+
generated_texts = generate_text(model, tokenizer, prompt, max_length, num_generations, temperature)
|
| 65 |
+
end_time = time.time()
|
| 66 |
+
|
| 67 |
+
st.subheader("Сгенерированный текст:")
|
| 68 |
+
for i, text in enumerate(generated_texts, start=1):
|
| 69 |
+
st.write(f"Генерация {i}:\n{text}")
|
| 70 |
+
|
| 71 |
+
generation_time = end_time - start_time
|
| 72 |
+
st.write(f"\nВремя генерации: {generation_time:.2f} секунд")
|
| 73 |
+
|
| 74 |
+
st.markdown(button_style, unsafe_allow_html=True) # Применяем стиль к кнопке
|
| 75 |
+
st.markdown(
|
| 76 |
+
"""
|
| 77 |
+
<style>
|
| 78 |
+
div[data-baseweb="textarea"] {
|
| 79 |
+
border: 2px solid #3498db; /* Цвет границы */
|
| 80 |
+
border-radius: 5px; /* Закругленные углы */
|
| 81 |
+
background-color: #ecf0f1; /* Цвет фона */
|
| 82 |
+
padding: 10px; /* Поля вокруг текстового поля */
|
| 83 |
+
}
|
| 84 |
+
</style>
|
| 85 |
+
""",
|
| 86 |
+
unsafe_allow_html=True,
|
| 87 |
+
)
|
| 88 |
+
except:
|
| 89 |
st.write('Модель в разработке ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ( ノ ゚ー゚)ノ')
|