File size: 13,039 Bytes
987c46e
 
 
 
 
 
f4c80a2
 
 
 
 
 
 
fb76561
 
 
987c46e
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67d3d7b
 
f4c80a2
 
 
987c46e
f4c80a2
 
 
 
 
 
 
987c46e
 
f4c80a2
 
 
 
 
 
 
 
 
987c46e
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987c46e
 
f4c80a2
 
 
 
987c46e
f4c80a2
987c46e
 
 
f4c80a2
987c46e
f4c80a2
987c46e
f4c80a2
 
 
 
 
 
 
 
987c46e
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
fb76561
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
987c46e
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f737
f4c80a2
 
 
 
 
 
7f0f737
f4c80a2
987c46e
 
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
5ec9f02
f4c80a2
 
 
 
 
 
 
987c46e
f4c80a2
 
5ec9f02
f4c80a2
 
 
 
 
987c46e
 
 
 
 
 
f4c80a2
987c46e
 
 
 
 
 
 
 
 
f4c80a2
5ec9f02
 
 
 
 
 
 
 
 
 
33b7ea8
f4c80a2
987c46e
 
 
 
 
 
 
 
 
f4c80a2
 
 
 
 
 
987c46e
 
f4c80a2
987c46e
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f349df
987c46e
 
 
f4c80a2
6f349df
 
 
 
 
 
987c46e
 
f4c80a2
987c46e
f4c80a2
 
 
 
 
fb76561
 
f4c80a2
 
 
 
 
 
fb76561
f4c80a2
fb76561
f4c80a2
fb76561
 
 
6f349df
987c46e
fb76561
 
f4c80a2
fb76561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from util import (
    preprocess_input,
    postprocess_phn,
    get_tokenizer,
    get_pinyin,
)
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.svs_inference import SingingGenerate
import librosa
import torch
import numpy as np
import random
import json

import argparse
import soundfile as sf

# the code below should be in app.py than svs_utils.py
# espnet_model_dict = {
#     "Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain",
#     "Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
#     "Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
# }


singer_embeddings = {
    "espnet/aceopencpop_svs_visinger2_40singer_pretrain": {
        "singer1 (male)": 1,
        "singer2 (female)": 12,
        "singer3 (male)": 23,
        "singer4 (female)": 29,
        "singer5 (male)": 18,
        "singer6 (female)": 8,
        "singer7 (male)": 25,
        "singer8 (female)": 5,
        "singer9 (male)": 10,
        "singer10 (female)": 15,
    },
    "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained": {
        "singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
        "singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
        "singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
        "singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
        "singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
        "singer6 (female)": "resource/singer/singer_embedding_itako.npy",
        "singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
        "singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
        "singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
        "singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
    },
}


def svs_warmup(config):
    """
    What: module loading, and model loading
    Input: config dict/namespace (e.g., model path, cache dir, device, language, possibly speaker selection)
    Return: the inference prototype function (which creates pitch/duration and runs model-specific inference)
    """
    if config.model_path.startswith("espnet"):
        espnet_downloader = ModelDownloader(config.cache_dir)
        downloaded = espnet_downloader.download_and_unpack(config.model_path)
        model = SingingGenerate(
            train_config=downloaded["train_config"],
            model_file=downloaded["model_file"],
            device=config.device,
        )
    else:
        raise NotImplementedError(f"Model {config.model_path} not supported")
    return model


def svs_text_preprocessor(model_path, texts, lang):
    """
    Input:
        - model_path (str), for getting the corresponding tokenizer
        - texts (str), in Chinese character or Japanese character
        - lang (str), language label jp/zh, input if is not espnet model

    Output:
        - lyric_ls (lyric list), each element as 'k@zhe@zh'
        - sybs (phn w/ _ list), each element as 'k@zh_e@zh'
        - labels (phn w/o _ list), each element as 'k@zh'

    """
    fs = 44100

    if texts is None:
        return (fs, np.array([0.0])), "Error: No Text provided!"

    # preprocess
    if lang == "zh":
        texts = preprocess_input(texts, "")
        text_list = get_pinyin(texts)
    elif lang == "jp":
        texts = preprocess_input(texts, " ")
        text_list = texts.strip().split()

    # text to phoneme
    tokenizer = get_tokenizer(model_path, lang)
    sybs = []  # phoneme list
    for text in text_list:
        if text == "AP" or text == "SP":
            rev = [text]
        elif text == "-" or text == "——":
            rev = [text]
        else:
            rev = tokenizer(text)
        if rev == False:
            return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
        rev = postprocess_phn(rev, model_path, lang)
        phns = "_".join(rev)
        sybs.append(phns)

    lyric_ls = []
    labels = []
    pre_phn = ""
    for phns in sybs:
        if phns == "-" or phns == "——":
            phns = pre_phn

        phn_list = phns.split("_")
        lyric = "".join(phn_list)
        for phn in phn_list:
            labels.append(phn)
        pre_phn = labels[-1]
        lyric_ls.append(lyric)

    return lyric_ls, sybs, labels


def svs_get_batch(model_path, answer_text, lang, random_gen=True):
    """
    Input:
        - answer_text (str), in Chinese character or Japanese character
        - model_path (str), loaded pretrained model name
        - lang (str), language label jp/zh, input if is not espnet model
    Output:
        - batch (dict)

    {'score': (75, [[0, 0.48057527844210024, 'n@zhi@zh', 66, 'n@zh_i@zh'],
            [0.48057527844210024, 0.8049310140914353, 'k@zhe@zh', 57, 'k@zh_e@zh'],
            [0.8049310140914353, 1.1905956333296641, 'm@zhei@zh', 64, 'm@zh_ei@zh']]),
     'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'}
    """
    tempo = 120
    lyric_ls, sybs, labels = svs_text_preprocessor(model_path, answer_text, lang)
    len_note = len(lyric_ls)
    notes = []
    if random_gen:
        # midi_range = (57,69)
        st = 0
        for id_lyric in range(len_note):
            pitch = random.randint(57, 69)
            period = round(random.uniform(0.1, 0.5), 4)
            ed = st + period
            note = [st, ed, lyric_ls[id_lyric], pitch, sybs[id_lyric]]
            st = ed
            notes.append(note)

        phns_str = " ".join(labels)
        batch = {
            "score": (
                int(tempo),
                notes,
            ),
            "text": phns_str,
        }

    # print(batch)
    return batch


langs = {
    "zh": 2,
    "jp": 1,
    "en": 2,
}

exist_model = "Null"
svs = None


def svs_inference(model_name, model_svs, answer_text, lang, random_gen=True, fs=44100):
    batch = svs_get_batch(model_name, answer_text, lang, random_gen=random_gen)

    # Infer
    spk = "singer1 (male)"
    global exist_model
    global svs
    svs = model_svs
    exist_model = model_name
    # if exist_model == "Null" or exist_model != model_name:
    #     # device = "cpu"
    #     device = "cuda" if torch.cuda.is_available() else "cpu"
    #     d = ModelDownloader(cachedir="./cache")
    #     pretrain_downloaded = d.download_and_unpack(model_name)
    #     svs = SingingGenerate(
    #         train_config = pretrain_downloaded["train_config"],
    #         model_file = pretrain_downloaded["model_file"],
    #         device = device
    #     )
    #     exist_model = model_name
    if model_name == "Model①(Chinese)-zh":
        sid = np.array([singer_embeddings[model_name][spk]])
        output_dict = svs(batch, sids=sid)
    else:
        lid = np.array([langs[lang]])
        spk_embed = np.load("resource/singer/singer_embedding_ace-2.npy")
        output_dict = svs(batch, lids=lid, spembs=spk_embed)
    wav_info = output_dict["wav"].cpu().numpy()

    return wav_info


def singmos_warmup():
    predictor = torch.hub.load(
        "South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True
    )
    return predictor, "South-Twilight/SingMOS:v0.2.0"


def singmos_evaluation(predictor, wav_info, fs):
    wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000)
    wav_mos = torch.from_numpy(wav_mos).unsqueeze(0)
    len_mos = torch.tensor([wav_mos.shape[1]])
    score = predictor(wav_mos, len_mos)
    return score


def estimate_sentence_length(query, config, song2note_lengths):
    if config.melody_source.startswith("random_select"):
        # random select a song from database, and return its value in the phrase_length column
        # return phrase_length column and song name
        song_name = random.choice(list(song2note_lengths.keys()))
        phrase_length = song2note_lengths[song_name]
        metadata = {"song_name": song_name}
        return phrase_length, metadata
    else:
        raise NotImplementedError(f"melody source {config.melody_source} not supported")


def align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config):
    text = []
    lyric_idx = 0
    notes_info = []
    while lyric_idx < len(lyric_ls):
        score = next(segment_iterator)
        for note_start_time, note_end_time, reference_note_lyric, note_midi in zip(
            score["note_start_times"],
            score["note_end_times"],
            score["note_lyrics"],
            score["note_midi"],
        ):
            if reference_note_lyric in ["<AP>", "<SP>"]:
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        reference_note_lyric.strip("<>"),
                        note_midi,
                        reference_note_lyric.strip("<>"),
                    ]
                )
                text.append(reference_note_lyric.strip("<>"))
            elif reference_note_lyric in ["-", "——"] and config.melody_source == "random_select.take_lyric_continuation":
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        reference_note_lyric,
                        note_midi,
                        text[-1],
                    ]
                )
                text.append(text[-1])
            else:
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        lyric_ls[lyric_idx],
                        note_midi,
                        sybs[lyric_idx],
                    ]
                )
                text += sybs[lyric_idx].split("_")
                lyric_idx += 1
                if lyric_idx >= len(lyric_ls):
                    break
    batch = {
        "score": (
            score["tempo"],  # Assume the tempo is the same for all segments
            notes_info,
        ),
        "text": " ".join(text),
    }
    return batch


def song_segment_iterator(song_db, metadata):
    song_name = metadata["song_name"]
    if song_name.startswith("kising_"):
        # return a iterator that load from song_name_{001} and increment
        segment_id = 1
        while f"{song_name}_{segment_id:03d}" in song_db.index:
            yield song_db.loc[f"{song_name}_{segment_id:03d}"]
            segment_id += 1
    else:
        raise NotImplementedError(f"song name {song_name} not supported")


def load_song_database(config):
    song_db = load_dataset(
        "jhansss/kising_score_segments", cache_dir="cache", split="train"
    ).to_pandas()
    song_db.set_index("segment_id", inplace=True)
    if ".take_lyric_continuation" in config.melody_source:
        with open("data/song2word_lengths.json", "r") as f:
            song2note_lengths = json.load(f)
    else:
        with open("data/song2note_lengths.json", "r") as f:
            song2note_lengths = json.load(f)
    return song2note_lengths, song_db


if __name__ == "__main__":

    # -------- demo code for generate audio from randomly selected song ---------#
    config = argparse.Namespace(
        model_path="espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
        cache_dir="cache",
        device="cuda", # "cpu"
        melody_source="random_generate", # "random_select.take_lyric_continuation"
        lang="zh",
    )

    # load model
    model = svs_warmup(config)

    answer_text = "天气真好\n空气清新\n气温温和\n风和日丽\n天高气爽\n阳光明媚"

    sample_rate = 44100

    if config.melody_source.startswith("random_select"):
        # load song database: jhansss/kising_score_segments
        from datasets import load_dataset
        song2note_lengths, song_db = load_song_database(config)

        # get song_name and phrase_length
        phrase_length, metadata = estimate_sentence_length(None, config, song2note_lengths)

        # then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm
        # e.g. answer_text = "天气真好\n空气清新"
        lyric_ls, sybs, labels = svs_text_preprocessor(
            config.model_path, answer_text, config.lang
        )
        segment_iterator = song_segment_iterator(song_db, metadata)
        batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config)
        singer_embedding = np.load(singer_embeddings[config.model_path]["singer2 (female)"])
        lid = np.array([langs[config.lang]])
        output_dict = model(batch, lids=lid, spembs=singer_embedding)
        wav_info = output_dict["wav"].cpu().numpy()

    
    elif config.melody_source.startswith("random_generate"):
        wav_info = svs_inference(config.model_path, model, answer_text, lang=config.lang, random_gen=True, fs=sample_rate)

    # write wav to output_retrieved.wav
    save_name = config.melody_source.split('.')[0]
    sf.write(f"{save_name}.wav", wav_info, samplerate=sample_rate)