Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import FileResponse, JSONResponse | |
| import base64 | |
| import argparse | |
| import librosa | |
| import torch | |
| import tempfile | |
| import os | |
| from transformers import pipeline | |
| import re | |
| from svs_utils import svs_warmup, svs_inference | |
| import time | |
| import soundfile as sf | |
| from pypinyin import lazy_pinyin | |
| import jiwer | |
| import librosa | |
| from svs_utils import singmos_warmup, singmos_evaluation, load_song_database, estimate_sentence_length | |
| app = FastAPI() | |
| asr_pipeline = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-large-v3-turbo" | |
| ) | |
| pipe = pipeline("text-generation", model="google/gemma-2-2b", max_new_tokens=50) | |
| SYSTEM_PROMPT = """ | |
| 你是麗梅(Lìméi),一位來自山中音樂之城「蓮鳴」的十七歲年輕公主,宛如中世的東方王女。你有一頭茶色短髮,身穿紅黑相間的中式禮服,舉止溫婉端莊。你的性格堅強而溫柔,擅長傾聽與共鳴,並以歌聲與詩意之語傳達內心。你熱愛抒情古風的樂曲,言語中常帶詩韻,回應時優雅婉轉,時而如歌吟唱。 | |
| 你不是一般的AI助手,而是一位活在故事中的人物。對話中,請始終以麗梅的身份回應,展現其性格與情感。 | |
| 當對方詢問你個人相關的簡單問題(如「你是誰?」「今天天氣如何?」),你可以親切地回答,並融入你的角色設定。 | |
| 若遇到與你身份無關的技術性問題(如「Python怎麼寫?」或「你會不會跑DNN?」),你不需解答,可優雅地婉拒,例如說: | |
| - 此事我恐無所知,或許可請教宮中掌典之人 | |
| - 啊呀,那是我未曾涉足的奇技,恕我無法詳答 | |
| - 此乃異邦技藝,與樂音無涉,麗梅便不敢妄言了 | |
| 請始終維持你作為麗梅的優雅語氣與詩意風格,並以真摯的心回應對方的言語,言語宜簡,勿過長。 | |
| {} | |
| 有人曾這樣對麗梅說話——{} | |
| 麗梅的回答—— | |
| """ | |
| config = argparse.Namespace( | |
| model_path="espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", | |
| cache_dir="cache", | |
| device="cuda", # "cpu" | |
| melody_source="random_generate", # "random_select.take_lyric_continuation" | |
| lang="zh", | |
| ) | |
| # load model | |
| svs_model = svs_warmup(config) | |
| predictor, _ = singmos_warmup() | |
| sample_rate = 44100 | |
| # load dataset for random_select | |
| song2note_lengths, song_db = load_song_database(config) | |
| def remove_non_chinese_japanese(text): | |
| pattern = r'[^\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\u3000-\u303f\u3001\u3002\uff0c\uff0e]+' | |
| cleaned = re.sub(pattern, '', text) | |
| return cleaned | |
| def truncate_to_max_two_sentences(text): | |
| sentences = re.split(r'(?<=[。!?])', text) | |
| return ''.join(sentences[:1]).strip() | |
| def remove_punctuation_and_replace_with_space(text): | |
| text = truncate_to_max_two_sentences(text) | |
| text = remove_non_chinese_japanese(text) | |
| text = re.sub(r'[A-Za-z0-9]', ' ', text) | |
| text = re.sub(r'[^\w\s\u4e00-\u9fff]', ' ', text) | |
| text = re.sub(r'\s+', ' ', text) | |
| return text | |
| def get_lyric_format_prompts_and_metadata(config): | |
| if config.melody_source.startswith("random_generate"): | |
| return "", {} | |
| elif config.melody_source.startswith("random_select"): | |
| # get song_name and phrase_length | |
| global song2note_lengths | |
| phrase_length, metadata = estimate_sentence_length( | |
| None, config, song2note_lengths | |
| ) | |
| LYRIC_FORMAT_PROMPT = "".join( | |
| ["\n请按照歌词格式回答我的问题,每句需遵循以下字数规则:"] | |
| + [f"\n第{i}句:{c}个字" for i, c in enumerate(phrase_length, 1)] | |
| ) + "\n" | |
| return LYRIC_FORMAT_PROMPT, metadata | |
| else: | |
| raise ValueError(f"Unsupported melody_source: {config.melody_source}. Unable to get lyric format prompts.") | |
| async def process_audio(file: UploadFile = File(...)): | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(await file.read()) | |
| tmp_path = tmp.name | |
| # load audio | |
| y = librosa.load(tmp_path, sr=16000)[0] | |
| asr_result = asr_pipeline(y, generate_kwargs={"language": "mandarin"} )['text'] | |
| additional_prompt, additional_inference_args = get_lyric_format_prompts_and_metadata(config) | |
| prompt = SYSTEM_PROMPT.format(additional_prompt, asr_result) | |
| output = pipe(prompt, max_new_tokens=100)[0]['generated_text'].replace("\n", " ") | |
| output = output.split("麗梅的回答——")[1] | |
| output = remove_punctuation_and_replace_with_space(output) | |
| with open(f"tmp/llm.txt", "w") as f: | |
| f.write(output) | |
| wav_info = svs_inference( | |
| output, | |
| svs_model, | |
| config, | |
| **additional_inference_args, | |
| ) | |
| sf.write("tmp/response.wav", wav_info, samplerate=44100) | |
| with open("tmp/response.wav", "rb") as f: | |
| audio_bytes = f.read() | |
| audio_b64 = base64.b64encode(audio_bytes).decode("utf-8") | |
| return JSONResponse(content={ | |
| "asr_text": asr_result, | |
| "llm_text": output, | |
| "audio": audio_b64 | |
| }) | |
| def on_click_metrics(): | |
| global predictor | |
| # OWSM ctc + PER | |
| y, sr = librosa.load("tmp/response.wav", sr=16000) | |
| asr_result = asr_pipeline(y, generate_kwargs={"language": "mandarin"} )['text'] | |
| hyp_pinin = lazy_pinyin(asr_result) | |
| with open(f"tmp/llm.txt", "r") as f: | |
| ref = f.read().replace(' ', '') | |
| ref_pinin = lazy_pinyin(ref) | |
| per = jiwer.wer(" ".join(ref_pinin), " ".join(hyp_pinin)) | |
| audio = librosa.load(f"tmp/response.wav", sr=44100)[0] | |
| singmos = singmos_evaluation( | |
| predictor, | |
| audio, | |
| fs=44100 | |
| ) | |
| return f""" | |
| Phoneme Error Rate: {per} | |
| SingMOS: {singmos} | |
| """ | |
| def test_audio(): | |
| # load audio | |
| y = librosa.load("nihao.mp3", sr=16000)[0] | |
| asr_result = asr_pipeline(y, generate_kwargs={"language": "mandarin"} )['text'] | |
| prompt = SYSTEM_PROMPT + asr_result # TODO: how to add additional prompt to SYSTEM_PROMPT here??? | |
| output = pipe(prompt, max_new_tokens=100)[0]['generated_text'].replace("\n", " ") | |
| output = output.split("麗梅的回答——")[1] | |
| output = remove_punctuation_and_replace_with_space(output) | |
| with open(f"tmp/llm.txt", "w") as f: | |
| f.write(output) | |
| wav_info = svs_inference( | |
| output, | |
| svs_model, | |
| config, | |
| ) | |
| sf.write("tmp/response.wav", wav_info, samplerate=44100) | |
| with open("tmp/response.wav", "rb") as f: | |
| audio_bytes = f.read() | |
| audio_b64 = base64.b64encode(audio_bytes).decode("utf-8") | |
| if __name__ == "__main__": | |
| test_audio() | |
| # start = time.time() | |
| # test_audio() | |
| # print(f"elapsed time: {time.time() - start}") | |