SingingSDS / interface.py
jhansss's picture
support output file path in pipeline.py
b5e825c
raw
history blame
9.79 kB
import time
import uuid
import gradio as gr
import yaml
from characters import CHARACTERS
from pipeline import SingingDialoguePipeline
class GradioInterface:
def __init__(self, options_config: str, default_config: str):
self.options = self.load_config(options_config)
self.svs_model_map = {
model["id"]: model for model in self.options["svs_models"]
}
self.default_config = self.load_config(default_config)
self.character_info = CHARACTERS
self.current_character = self.default_config["character"]
self.current_svs_model = (
f"{self.default_config['language']}-{self.default_config['svs_model']}"
)
self.current_voice = self.svs_model_map[self.current_svs_model]["voices"][
self.character_info[self.current_character].default_voice
]
self.pipeline = SingingDialoguePipeline(self.default_config)
def load_config(self, path: str):
with open(path, "r") as f:
return yaml.safe_load(f)
def create_interface(self) -> gr.Blocks:
try:
with gr.Blocks(title="SingingSDS") as demo:
gr.Markdown("# SingingSDS: Role-Playing Singing Spoken Dialogue System")
with gr.Row():
with gr.Column(scale=1):
character_image = gr.Image(
self.character_info[self.current_character].image_path,
label="Character",
show_label=False,
)
with gr.Column(scale=2):
mic_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Speak to the character",
)
interaction_log = gr.Textbox(
label="Interaction Log", lines=3, interactive=False
)
audio_output = gr.Audio(
label="Character's Response", type="filepath", autoplay=True
)
with gr.Row():
metrics_button = gr.Button(
"Evaluate Metrics", variant="secondary"
)
metrics_output = gr.Textbox(
label="Evaluation Results", lines=3, interactive=False
)
gr.Markdown("## Configuration")
with gr.Row():
with gr.Column():
character_radio = gr.Radio(
label="Character Role",
choices=list(self.character_info.keys()),
value=self.default_config["character"],
)
with gr.Row():
asr_radio = gr.Radio(
label="ASR Model",
choices=[
(model["name"], model["id"])
for model in self.options["asr_models"]
],
value=self.default_config["asr_model"],
)
with gr.Row():
llm_radio = gr.Radio(
label="LLM Model",
choices=[
(model["name"], model["id"])
for model in self.options["llm_models"]
],
value=self.default_config["llm_model"],
)
with gr.Column():
with gr.Row():
melody_radio = gr.Radio(
label="Melody Source",
choices=[
(source["name"], source["id"])
for source in self.options["melody_sources"]
],
value=self.default_config["melody_source"],
)
with gr.Row():
svs_radio = gr.Radio(
label="SVS Model",
choices=[
(model["name"], model["id"])
for model in self.options["svs_models"]
],
value=self.current_svs_model,
)
with gr.Row():
voice_radio = gr.Radio(
label="Singing voice",
choices=list(
self.svs_model_map[self.current_svs_model][
"voices"
].keys()
),
value=self.character_info[
self.current_character
].default_voice,
)
character_radio.change(
fn=self.update_character,
inputs=character_radio,
outputs=[character_image, voice_radio],
)
asr_radio.change(
fn=self.update_asr_model, inputs=asr_radio, outputs=asr_radio
)
llm_radio.change(
fn=self.update_llm_model, inputs=llm_radio, outputs=llm_radio
)
svs_radio.change(
fn=self.update_svs_model,
inputs=svs_radio,
outputs=[svs_radio, voice_radio],
)
melody_radio.change(
fn=self.update_melody_source,
inputs=melody_radio,
outputs=melody_radio,
)
voice_radio.change(
fn=self.update_voice, inputs=voice_radio, outputs=voice_radio
)
mic_input.change(
fn=self.run_pipeline,
inputs=mic_input,
outputs=[interaction_log, audio_output],
)
metrics_button.click(
fn=self.update_metrics,
inputs=audio_output,
outputs=[metrics_output],
)
return demo
except Exception as e:
print(f"error: {e}")
breakpoint()
return gr.Blocks()
def update_character(self, character):
self.current_character = character
character_voice = self.character_info[self.current_character].default_voice
self.current_voice = self.svs_model_map[self.current_svs_model]["voices"][
character_voice
]
return gr.update(value=self.character_info[character].image_path), gr.update(
value=character_voice
)
def update_asr_model(self, asr_model):
self.pipeline.set_asr_model(asr_model)
return gr.update(value=asr_model)
def update_llm_model(self, llm_model):
self.pipeline.set_llm_model(llm_model)
return gr.update(value=llm_model)
def update_svs_model(self, svs_model):
self.current_svs_model = svs_model
character_voice = self.character_info[self.current_character].default_voice
self.current_voice = self.svs_model_map[self.current_svs_model]["voices"][
character_voice
]
self.pipeline.set_svs_model(
self.svs_model_map[self.current_svs_model]["model_path"]
)
print(
f"SVS model updated to {self.current_svs_model}. Will set gradio svs_radio to {svs_model} and voice_radio to {character_voice}"
)
return (
gr.update(value=svs_model),
gr.update(
choices=list(
self.svs_model_map[self.current_svs_model]["voices"].keys()
),
value=character_voice,
),
)
def update_melody_source(self, melody_source):
self.current_melody_source = melody_source
return gr.update(value=self.current_melody_source)
def update_voice(self, voice):
self.current_voice = self.svs_model_map[self.current_svs_model]["voices"][voice]
return gr.update(value=voice)
def run_pipeline(self, audio_path):
if not audio_path:
return gr.update(value=""), gr.update(value="")
tmp_file = f"audio_{int(time.time())}_{uuid.uuid4().hex[:8]}.wav"
results = self.pipeline.run(
audio_path,
self.svs_model_map[self.current_svs_model]["lang"],
self.character_info[self.current_character].prompt,
self.current_voice,
output_audio_path=tmp_file,
max_new_tokens=50,
)
formatted_logs = f"ASR: {results['asr_text']}\nLLM: {results['llm_text']}"
return gr.update(value=formatted_logs), gr.update(
value=results["output_audio_path"]
)
def update_metrics(self, audio_path):
if not audio_path:
return gr.update(value="")
results = self.pipeline.evaluate(audio_path)
formatted_metrics = "\n".join([f"{k}: {v}" for k, v in results.items()])
return gr.update(value=formatted_metrics)