Spaces:
Sleeping
Sleeping
Refactor svs_inference and related functions; Bug fixes and code cleanup
Browse files- server.py +2 -5
- svs_utils.py +68 -126
- util.py +12 -6
server.py
CHANGED
@@ -86,12 +86,9 @@ async def process_audio(file: UploadFile = File(...)):
|
|
86 |
f.write(output)
|
87 |
|
88 |
wav_info = svs_inference(
|
89 |
-
config.model_path,
|
90 |
-
svs_model,
|
91 |
output,
|
92 |
-
|
93 |
-
|
94 |
-
fs=44100
|
95 |
)
|
96 |
sf.write("tmp/response.wav", wav_info, samplerate=44100)
|
97 |
|
|
|
86 |
f.write(output)
|
87 |
|
88 |
wav_info = svs_inference(
|
|
|
|
|
89 |
output,
|
90 |
+
svs_model,
|
91 |
+
config,
|
|
|
92 |
)
|
93 |
sf.write("tmp/response.wav", wav_info, samplerate=44100)
|
94 |
|
svs_utils.py
CHANGED
@@ -1,54 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
get_tokenizer,
|
5 |
-
get_pinyin,
|
6 |
-
)
|
7 |
-
from espnet_model_zoo.downloader import ModelDownloader
|
8 |
-
from espnet2.bin.svs_inference import SingingGenerate
|
9 |
import librosa
|
10 |
-
import torch
|
11 |
import numpy as np
|
12 |
-
import
|
13 |
-
import
|
|
|
14 |
|
15 |
-
import
|
16 |
-
import soundfile as sf
|
17 |
-
|
18 |
-
# the code below should be in app.py than svs_utils.py
|
19 |
-
# espnet_model_dict = {
|
20 |
-
# "Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain",
|
21 |
-
# "Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
|
22 |
-
# "Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
|
23 |
-
# }
|
24 |
-
|
25 |
-
|
26 |
-
singer_embeddings = {
|
27 |
-
"espnet/aceopencpop_svs_visinger2_40singer_pretrain": {
|
28 |
-
"singer1 (male)": 1,
|
29 |
-
"singer2 (female)": 12,
|
30 |
-
"singer3 (male)": 23,
|
31 |
-
"singer4 (female)": 29,
|
32 |
-
"singer5 (male)": 18,
|
33 |
-
"singer6 (female)": 8,
|
34 |
-
"singer7 (male)": 25,
|
35 |
-
"singer8 (female)": 5,
|
36 |
-
"singer9 (male)": 10,
|
37 |
-
"singer10 (female)": 15,
|
38 |
-
},
|
39 |
-
"espnet/mixdata_svs_visinger2_spkembed_lang_pretrained": {
|
40 |
-
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
|
41 |
-
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
|
42 |
-
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
|
43 |
-
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
|
44 |
-
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
|
45 |
-
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
|
46 |
-
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
|
47 |
-
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
|
48 |
-
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
|
49 |
-
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
|
50 |
-
},
|
51 |
-
}
|
52 |
|
53 |
|
54 |
def svs_warmup(config):
|
@@ -86,7 +45,7 @@ def svs_text_preprocessor(model_path, texts, lang):
|
|
86 |
fs = 44100
|
87 |
|
88 |
if texts is None:
|
89 |
-
|
90 |
|
91 |
# preprocess
|
92 |
if lang == "zh":
|
@@ -129,7 +88,7 @@ def svs_text_preprocessor(model_path, texts, lang):
|
|
129 |
return lyric_ls, sybs, labels
|
130 |
|
131 |
|
132 |
-
def
|
133 |
"""
|
134 |
Input:
|
135 |
- answer_text (str), in Chinese character or Japanese character
|
@@ -144,72 +103,55 @@ def svs_get_batch(model_path, answer_text, lang, random_gen=True):
|
|
144 |
'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'}
|
145 |
"""
|
146 |
tempo = 120
|
147 |
-
lyric_ls, sybs, labels = svs_text_preprocessor(model_path, answer_text, lang)
|
148 |
len_note = len(lyric_ls)
|
149 |
notes = []
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
"text": phns_str,
|
168 |
-
}
|
169 |
-
|
170 |
-
# print(batch)
|
171 |
return batch
|
172 |
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
def svs_inference(model_name, model_svs, answer_text, lang, random_gen=True, fs=44100):
|
185 |
-
batch = svs_get_batch(model_name, answer_text, lang, random_gen=random_gen)
|
186 |
-
|
187 |
-
# Infer
|
188 |
-
spk = "singer1 (male)"
|
189 |
-
global exist_model
|
190 |
-
global svs
|
191 |
-
svs = model_svs
|
192 |
-
exist_model = model_name
|
193 |
-
# if exist_model == "Null" or exist_model != model_name:
|
194 |
-
# # device = "cpu"
|
195 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
196 |
-
# d = ModelDownloader(cachedir="./cache")
|
197 |
-
# pretrain_downloaded = d.download_and_unpack(model_name)
|
198 |
-
# svs = SingingGenerate(
|
199 |
-
# train_config = pretrain_downloaded["train_config"],
|
200 |
-
# model_file = pretrain_downloaded["model_file"],
|
201 |
-
# device = device
|
202 |
-
# )
|
203 |
-
# exist_model = model_name
|
204 |
-
if model_name == "Model①(Chinese)-zh":
|
205 |
-
sid = np.array([singer_embeddings[model_name][spk]])
|
206 |
-
output_dict = svs(batch, sids=sid)
|
207 |
else:
|
208 |
-
|
209 |
-
spk_embed = np.load("resource/singer/singer_embedding_ace-2.npy")
|
210 |
-
output_dict = svs(batch, lids=lid, spembs=spk_embed)
|
211 |
-
wav_info = output_dict["wav"].cpu().numpy()
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
return wav_info
|
214 |
|
215 |
|
@@ -230,8 +172,6 @@ def singmos_evaluation(predictor, wav_info, fs):
|
|
230 |
|
231 |
def estimate_sentence_length(query, config, song2note_lengths):
|
232 |
if config.melody_source.startswith("random_select"):
|
233 |
-
# random select a song from database, and return its value in the phrase_length column
|
234 |
-
# return phrase_length column and song name
|
235 |
song_name = random.choice(list(song2note_lengths.keys()))
|
236 |
phrase_length = song2note_lengths[song_name]
|
237 |
metadata = {"song_name": song_name}
|
@@ -263,7 +203,10 @@ def align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config):
|
|
263 |
]
|
264 |
)
|
265 |
text.append(reference_note_lyric.strip("<>"))
|
266 |
-
elif
|
|
|
|
|
|
|
267 |
notes_info.append(
|
268 |
[
|
269 |
note_start_time,
|
@@ -311,6 +254,8 @@ def song_segment_iterator(song_db, metadata):
|
|
311 |
|
312 |
|
313 |
def load_song_database(config):
|
|
|
|
|
314 |
song_db = load_dataset(
|
315 |
"jhansss/kising_score_segments", cache_dir="cache", split="train"
|
316 |
).to_pandas()
|
@@ -325,6 +270,8 @@ def load_song_database(config):
|
|
325 |
|
326 |
|
327 |
if __name__ == "__main__":
|
|
|
|
|
328 |
|
329 |
# -------- demo code for generate audio from randomly selected song ---------#
|
330 |
config = argparse.Namespace(
|
@@ -333,6 +280,7 @@ if __name__ == "__main__":
|
|
333 |
device="cuda", # "cpu"
|
334 |
melody_source="random_generate", # "random_select.take_lyric_continuation"
|
335 |
lang="zh",
|
|
|
336 |
)
|
337 |
|
338 |
# load model
|
@@ -344,28 +292,22 @@ if __name__ == "__main__":
|
|
344 |
|
345 |
if config.melody_source.startswith("random_select"):
|
346 |
# load song database: jhansss/kising_score_segments
|
347 |
-
from datasets import load_dataset
|
348 |
song2note_lengths, song_db = load_song_database(config)
|
349 |
|
350 |
# get song_name and phrase_length
|
|
|
|
|
|
|
351 |
phrase_length, metadata = estimate_sentence_length(None, config, song2note_lengths)
|
352 |
|
353 |
# then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm
|
354 |
# e.g. answer_text = "天气真好\n空气清新"
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
segment_iterator = song_segment_iterator(song_db, metadata)
|
359 |
-
batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config)
|
360 |
-
singer_embedding = np.load(singer_embeddings[config.model_path]["singer2 (female)"])
|
361 |
-
lid = np.array([langs[config.lang]])
|
362 |
-
output_dict = model(batch, lids=lid, spembs=singer_embedding)
|
363 |
-
wav_info = output_dict["wav"].cpu().numpy()
|
364 |
|
365 |
-
|
366 |
-
elif config.melody_source.startswith("random_generate"):
|
367 |
-
wav_info = svs_inference(config.model_path, model, answer_text, lang=config.lang, random_gen=True, fs=sample_rate)
|
368 |
|
369 |
# write wav to output_retrieved.wav
|
370 |
-
save_name = config.melody_source
|
371 |
sf.write(f"{save_name}.wav", wav_info, samplerate=sample_rate)
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
|
|
|
|
|
|
|
|
|
|
4 |
import librosa
|
|
|
5 |
import numpy as np
|
6 |
+
import torch
|
7 |
+
from espnet2.bin.svs_inference import SingingGenerate
|
8 |
+
from espnet_model_zoo.downloader import ModelDownloader
|
9 |
|
10 |
+
from util import get_pinyin, get_tokenizer, postprocess_phn, preprocess_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def svs_warmup(config):
|
|
|
45 |
fs = 44100
|
46 |
|
47 |
if texts is None:
|
48 |
+
raise ValueError("texts is None when calling svs_text_preprocessor")
|
49 |
|
50 |
# preprocess
|
51 |
if lang == "zh":
|
|
|
88 |
return lyric_ls, sybs, labels
|
89 |
|
90 |
|
91 |
+
def create_batch_with_randomized_melody(lyric_ls, sybs, labels, config):
|
92 |
"""
|
93 |
Input:
|
94 |
- answer_text (str), in Chinese character or Japanese character
|
|
|
103 |
'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'}
|
104 |
"""
|
105 |
tempo = 120
|
|
|
106 |
len_note = len(lyric_ls)
|
107 |
notes = []
|
108 |
+
# midi_range = (57,69)
|
109 |
+
st = 0
|
110 |
+
for id_lyric in range(len_note):
|
111 |
+
pitch = random.randint(57, 69)
|
112 |
+
period = round(random.uniform(0.1, 0.5), 4)
|
113 |
+
ed = st + period
|
114 |
+
note = [st, ed, lyric_ls[id_lyric], pitch, sybs[id_lyric]]
|
115 |
+
st = ed
|
116 |
+
notes.append(note)
|
117 |
+
phns_str = " ".join(labels)
|
118 |
+
batch = {
|
119 |
+
"score": (
|
120 |
+
int(tempo),
|
121 |
+
notes,
|
122 |
+
),
|
123 |
+
"text": phns_str,
|
124 |
+
}
|
|
|
|
|
|
|
|
|
125 |
return batch
|
126 |
|
127 |
|
128 |
+
def svs_inference(answer_text, svs_model, config, **kwargs):
|
129 |
+
lyric_ls, sybs, labels = svs_text_preprocessor(
|
130 |
+
config.model_path, answer_text, config.lang
|
131 |
+
)
|
132 |
+
if config.melody_source.startswith("random_generate"):
|
133 |
+
batch = create_batch_with_randomized_melody(lyric_ls, sybs, labels, config)
|
134 |
+
elif config.melody_source.startswith("random_select"):
|
135 |
+
segment_iterator = song_segment_iterator(kwargs["song_db"], kwargs["metadata"])
|
136 |
+
batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
else:
|
138 |
+
raise NotImplementedError(f"melody source {config.melody_source} not supported")
|
|
|
|
|
|
|
139 |
|
140 |
+
if config.model_path == "espnet/aceopencpop_svs_visinger2_40singer_pretrain":
|
141 |
+
sid = np.array([config.speaker])
|
142 |
+
output_dict = svs_model(batch, sids=sid)
|
143 |
+
elif config.model_path == "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained":
|
144 |
+
langs = {
|
145 |
+
"zh": 2,
|
146 |
+
"jp": 1,
|
147 |
+
"en": 2,
|
148 |
+
}
|
149 |
+
lid = np.array([langs[config.lang]])
|
150 |
+
spk_embed = np.load(config.speaker)
|
151 |
+
output_dict = svs_model(batch, lids=lid, spembs=spk_embed)
|
152 |
+
else:
|
153 |
+
raise NotImplementedError(f"Model {config.model_path} not supported")
|
154 |
+
wav_info = output_dict["wav"].cpu().numpy()
|
155 |
return wav_info
|
156 |
|
157 |
|
|
|
172 |
|
173 |
def estimate_sentence_length(query, config, song2note_lengths):
|
174 |
if config.melody_source.startswith("random_select"):
|
|
|
|
|
175 |
song_name = random.choice(list(song2note_lengths.keys()))
|
176 |
phrase_length = song2note_lengths[song_name]
|
177 |
metadata = {"song_name": song_name}
|
|
|
203 |
]
|
204 |
)
|
205 |
text.append(reference_note_lyric.strip("<>"))
|
206 |
+
elif (
|
207 |
+
reference_note_lyric in ["-", "——"]
|
208 |
+
and config.melody_source == "random_select.take_lyric_continuation"
|
209 |
+
):
|
210 |
notes_info.append(
|
211 |
[
|
212 |
note_start_time,
|
|
|
254 |
|
255 |
|
256 |
def load_song_database(config):
|
257 |
+
from datasets import load_dataset
|
258 |
+
|
259 |
song_db = load_dataset(
|
260 |
"jhansss/kising_score_segments", cache_dir="cache", split="train"
|
261 |
).to_pandas()
|
|
|
270 |
|
271 |
|
272 |
if __name__ == "__main__":
|
273 |
+
import argparse
|
274 |
+
import soundfile as sf
|
275 |
|
276 |
# -------- demo code for generate audio from randomly selected song ---------#
|
277 |
config = argparse.Namespace(
|
|
|
280 |
device="cuda", # "cpu"
|
281 |
melody_source="random_generate", # "random_select.take_lyric_continuation"
|
282 |
lang="zh",
|
283 |
+
speaker="resource/singer/singer_embedding_ace-2.npy",
|
284 |
)
|
285 |
|
286 |
# load model
|
|
|
292 |
|
293 |
if config.melody_source.startswith("random_select"):
|
294 |
# load song database: jhansss/kising_score_segments
|
|
|
295 |
song2note_lengths, song_db = load_song_database(config)
|
296 |
|
297 |
# get song_name and phrase_length
|
298 |
+
phrase_length, metadata = estimate_sentence_length(
|
299 |
+
None, config, song2note_lengths
|
300 |
+
)
|
301 |
phrase_length, metadata = estimate_sentence_length(None, config, song2note_lengths)
|
302 |
|
303 |
# then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm
|
304 |
# e.g. answer_text = "天气真好\n空气清新"
|
305 |
+
additional_kwargs = {"song_db": song_db, "metadata": metadata}
|
306 |
+
else:
|
307 |
+
additional_kwargs = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
wav_info = svs_inference(answer_text, model, config, **additional_kwargs)
|
|
|
|
|
310 |
|
311 |
# write wav to output_retrieved.wav
|
312 |
+
save_name = config.melody_source
|
313 |
sf.write(f"{save_name}.wav", wav_info, samplerate=sample_rate)
|
util.py
CHANGED
@@ -21,6 +21,7 @@ def postprocess_phn(phns, model_name, lang):
|
|
21 |
|
22 |
|
23 |
def pyopenjtalk_g2p(text) -> List[str]:
|
|
|
24 |
with warnings.catch_warnings(record=True) as w:
|
25 |
warnings.simplefilter("always")
|
26 |
# phones is a str object separated by space
|
@@ -53,20 +54,25 @@ def split_pinyin_py(pinyin: str) -> tuple[str]:
|
|
53 |
|
54 |
|
55 |
def get_tokenizer(model, lang):
|
56 |
-
if
|
57 |
-
if "
|
58 |
-
print("hello")
|
59 |
return lambda text: split_pinyin_py(text)
|
60 |
else:
|
|
|
|
|
|
|
61 |
with open(os.path.join("resource/all_plans.json"), "r") as f:
|
62 |
all_plan_dict = json.load(f)
|
63 |
for plan in all_plan_dict["plans"]:
|
64 |
if plan["language"] == "zh":
|
65 |
zh_plan = plan
|
66 |
return lambda text: split_pinyin_ace(text, zh_plan)
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
def get_pinyin(texts):
|
|
|
21 |
|
22 |
|
23 |
def pyopenjtalk_g2p(text) -> List[str]:
|
24 |
+
import pyopenjtalk
|
25 |
with warnings.catch_warnings(record=True) as w:
|
26 |
warnings.simplefilter("always")
|
27 |
# phones is a str object separated by space
|
|
|
54 |
|
55 |
|
56 |
def get_tokenizer(model, lang):
|
57 |
+
if model == "espnet/aceopencpop_svs_visinger2_40singer_pretrain":
|
58 |
+
if lang == "zh":
|
|
|
59 |
return lambda text: split_pinyin_py(text)
|
60 |
else:
|
61 |
+
raise ValueError(f"Only support Chinese language for {model}")
|
62 |
+
elif model == "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained":
|
63 |
+
if lang == "zh":
|
64 |
with open(os.path.join("resource/all_plans.json"), "r") as f:
|
65 |
all_plan_dict = json.load(f)
|
66 |
for plan in all_plan_dict["plans"]:
|
67 |
if plan["language"] == "zh":
|
68 |
zh_plan = plan
|
69 |
return lambda text: split_pinyin_ace(text, zh_plan)
|
70 |
+
elif lang == "jp":
|
71 |
+
return pyopenjtalk_g2p
|
72 |
+
else:
|
73 |
+
raise ValueError(f"Only support Chinese and Japanese language for {model}")
|
74 |
+
else:
|
75 |
+
raise ValueError(f"Only support espnet/aceopencpop_svs_visinger2_40singer_pretrain and espnet/mixdata_svs_visinger2_spkembed_lang_pretrained for now")
|
76 |
|
77 |
|
78 |
def get_pinyin(texts):
|