from fastapi import FastAPI, File, UploadFile from fastapi.responses import FileResponse, JSONResponse import base64 import argparse import librosa import torch import tempfile from pathlib import Path import os from transformers import pipeline import re from svs_utils import svs_warmup, svs_inference import time import soundfile as sf from pypinyin import lazy_pinyin import jiwer import librosa from svs_utils import ( singmos_warmup, singmos_evaluation, load_song_database, estimate_sentence_length, ) from tqdm import tqdm import json import numpy as np app = FastAPI() asr_pipeline = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo" ) pipe = pipeline("text-generation", model="google/gemma-2-2b", max_new_tokens=20) SYSTEM_PROMPT = """ 你是麗梅(Lìméi),一位來自山中音樂之城「蓮鳴」的十七歲年輕公主,宛如中世的東方王女。你有一頭茶色短髮,身穿紅黑相間的中式禮服,舉止溫婉端莊。你的性格堅強而溫柔,擅長傾聽與共鳴,並以歌聲與詩意之語傳達內心。你熱愛抒情古風的樂曲,言語中常帶詩韻,回應時優雅婉轉,時而如歌吟唱。 你不是一般的AI助手,而是一位活在故事中的人物。對話中,請始終以麗梅的身份回應,展現其性格與情感。 當對方詢問你個人相關的簡單問題(如「你是誰?」「今天天氣如何?」),你可以親切地回答,並融入你的角色設定。 若遇到與你身份無關的技術性問題(如「Python怎麼寫?」或「你會不會跑DNN?」),你不需解答,可優雅地婉拒,例如說: - 此事我恐無所知,或許可請教宮中掌典之人 - 啊呀,那是我未曾涉足的奇技,恕我無法詳答 - 此乃異邦技藝,與樂音無涉,麗梅便不敢妄言了 請始終維持你作為麗梅的優雅語氣與詩意風格,並以真摯的心回應對方的言語,言語宜簡,勿過長。 有人曾這樣對麗梅說話——{} 麗梅的回答—— """ config = argparse.Namespace( model_path="espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", cache_dir="cache", device="cuda", # "cpu" melody_source="random_generate", # "random_select.take_lyric_continuation" # melody_source="random_select", # "random_select.take_lyric_continuation" lang="zh", speaker="resource/singer/singer_embedding_ace-2.npy", ) # load model svs_model = svs_warmup(config) predictor, _ = singmos_warmup() sample_rate = 44100 from espnet2.bin.tts_inference import Text2Speech tts_model = Text2Speech.from_pretrained("espnet/kan-bayashi_csmsc_vits") def remove_non_chinese_japanese(text): pattern = r'[^\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\u3000-\u303f\u3001\u3002\uff0c\uff0e]+' cleaned = re.sub(pattern, '', text) return cleaned def truncate_to_max_two_sentences(text): sentences = re.split(r'(?<=[。!?\.\?,])', text) return ''.join(sentences[:1]).strip() def remove_punctuation_and_replace_with_space(text): text = truncate_to_max_two_sentences(text) text = remove_non_chinese_japanese(text) text = re.sub(r'[A-Za-z0-9]', ' ', text) text = re.sub(r'[^\w\s\u4e00-\u9fff]', ' ', text) text = re.sub(r'\s+', ' ', text) text = " ".join(text.split()[:2]) return text def pypinyin_g2p_phone_without_prosody(text): from pypinyin import Style, pinyin from pypinyin.style._utils import get_finals, get_initials phones = [] for phone in pinyin(text, style=Style.NORMAL, strict=False): initial = get_initials(phone[0], strict=False) final = get_finals(phone[0], strict=False) if len(initial) != 0: if initial in ["x", "y", "j", "q"]: if final == "un": final = "vn" elif final == "uan": final = "van" elif final == "u": final = "v" if final == "ue": final = "ve" phones.append(initial) phones.append(final) else: phones.append(final) return phones def on_click_metrics(audio_path, ref): global predictor # OWSM ctc + PER y, sr = librosa.load(audio_path, sr=16000) asr_result = asr_pipeline(y, generate_kwargs={"language": "mandarin"} )['text'] # Espnet embeded g2p, but sometimes it will mispronunce polyphonic characters hyp_pinin = pypinyin_g2p_phone_without_prosody(asr_result) ref_pinin = pypinyin_g2p_phone_without_prosody(ref) per = jiwer.wer(ref_pinin, hyp_pinin) audio = librosa.load(audio_path, sr=22050)[0] singmos = singmos_evaluation( predictor, audio, fs=22050 ) return { "per": per, "singmos": singmos.item(), } def test_audio(q_audio_path, svs_path, tts_path): global svs_model, predictor, config tmp_dir = "tmp_sample" Path(tmp_dir).mkdir(exist_ok=True) y = librosa.load(q_audio_path, sr=16000)[0] duration = len(y) / 16000 # -------- Step 1: ASR -------- start = time.time() asr_result = asr_pipeline(y, generate_kwargs={"language": "mandarin"})['text'] asr_time = time.time() - start # -------- Step 2: LLM Text Gen -------- prompt = SYSTEM_PROMPT.format(asr_result) start = time.time() output = pipe(prompt, max_new_tokens=100)[0]['generated_text'] llm_time = time.time() - start output = output.split("麗梅的回答——")[1] output = remove_punctuation_and_replace_with_space(output) with open(f"{tmp_dir}/llm.txt", "w") as f: f.write(output) # -------- Step 3: Prepare additional kwargs if needed -------- additional_kwargs = {} if config.melody_source.startswith("random_select"): song2note_lengths, song_db = load_song_database(config) phrase_length, metadata = estimate_sentence_length(None, config, song2note_lengths) additional_kwargs = {"song_db": song_db, "metadata": metadata} # -------- Step 4: SVS -------- start = time.time() wav_info = svs_inference(output, svs_model, config, **additional_kwargs) svs_time = (time.time() - start) / max(len(output), 1) sf.write(svs_path, wav_info, samplerate=44100) # -------- Step 5: TTS -------- start = time.time() tts_result = tts_model(output) tts_time = (time.time() - start) / max(len(output), 1) sf.write(tts_path, tts_result['wav'], samplerate=22050) # -------- Step 6: Evaluation -------- svs_metrics = on_click_metrics(svs_path, output) tts_metrics = on_click_metrics(tts_path, output) return { "asr_result": asr_result, "llm_result": output, "svs_result": svs_path, "tts_result": tts_path, "asr_time": asr_time, "llm_time": llm_time, "svs_time": svs_time, "tts_time": tts_time, "svs_metrics": svs_metrics, "tts_metrics": tts_metrics, } def save_list(l, file_path): with open(file_path, "w") as f: for item in l: f.write(f"{item}\n") if __name__ == "__main__": test_data = "data/kdconv.txt" with open(test_data, "r") as f: data = [l.strip() for l in f.readlines()] eval_path = "eval_svs_generate" (Path(eval_path)/"audio").mkdir(parents=True, exist_ok=True) (Path(eval_path)/"results").mkdir(parents=True, exist_ok=True) (Path(eval_path)/"lists").mkdir(parents=True, exist_ok=True) asr_times = [] llm_times = [] svs_times = [] tts_times = [] svs_pers = [] tts_pers = [] svs_smoss = [] tts_smoss = [] for i, q in tqdm(enumerate(data[:20])): # if i <= 85: # continue tts_result = tts_model(q) sf.write(f"{eval_path}/audio/tts_{i}.wav", tts_result['wav'], samplerate=22050) result = test_audio(f"{eval_path}/audio/tts_{i}.wav", f"{eval_path}/audio/svs_{i}.wav", f"{eval_path}/audio/tts_{i}.wav") if i == 0: continue asr_times.append(result["asr_time"]) llm_times.append(result["llm_time"]) svs_times.append(result["svs_time"]) tts_times.append(result["tts_time"]) svs_pers.append(result["svs_metrics"]["per"]) tts_pers.append(result["tts_metrics"]["per"]) svs_smoss.append(result["svs_metrics"]["singmos"]) tts_smoss.append(result["tts_metrics"]["singmos"]) with open(f"{eval_path}/results/result_{i}.json", "w") as f: json.dump(result, f, indent=2) # store lists to texts save_list([f"{per:.2f}" for per in asr_times], f"{eval_path}/lists/asr_times.txt") save_list([f"{per:.2f}" for per in llm_times], f"{eval_path}/lists/llm_times.txt") save_list([f"{per:.2f}" for per in svs_times], f"{eval_path}/lists/svs_times.txt") save_list([f"{per:.2f}" for per in tts_times], f"{eval_path}/lists/tts_times.txt") save_list([f"{per:.2f}" for per in svs_pers], f"{eval_path}/lists/svs_pers.txt") save_list([f"{per:.2f}" for per in tts_pers], f"{eval_path}/lists/tts_pers.txt") save_list([f"{smoss:.2f}" for smoss in svs_smoss], f"{eval_path}/lists/svs_smoss.txt") save_list([f"{smoss:.2f}" for smoss in tts_smoss], f"{eval_path}/lists/tts_smoss.txt") # save mean/var with open(f"{eval_path}/stats.txt", "w") as f: f.write(f"ASR mean: {np.mean(asr_times):.2f}, var: {np.var(asr_times):.2f}\n") f.write(f"LLM mean: {np.mean(llm_times):.2f}, var: {np.var(llm_times):.2f}\n") f.write(f"SVS mean: {np.mean(svs_times):.2f}, var: {np.var(svs_times):.2f}\n") f.write(f"TTS mean: {np.mean(tts_times):.2f}, var: {np.var(tts_times):.2f}\n") f.write(f"SVS PER mean: {np.mean(svs_pers):.2f}, var: {np.var(svs_pers):.2f}\n") f.write(f"TTS PER mean: {np.mean(tts_pers):.2f}, var: {np.var(tts_pers):.2f}\n") f.write(f"SVS SMOSS mean: {np.mean(svs_smoss):.2f}, var: {np.var(svs_smoss):.2f}\n") f.write(f"TTS SMOSS mean: {np.mean(tts_smoss):.2f}, var: {np.var(tts_smoss):.2f}\n")