Spaces:
Runtime error
Runtime error
Commit
·
fce83cf
1
Parent(s):
9097dd4
Initial commit
Browse files- app.py +38 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from sklearn.cluster import KMeans
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Mock data
|
7 |
+
mock_words = [
|
8 |
+
"apple", "banana", "cherry", "date", # Fruits
|
9 |
+
"car", "truck", "bus", "bicycle", # Vehicles
|
10 |
+
"red", "blue", "green", "yellow", # Colors
|
11 |
+
"cat", "dog", "rabbit", "hamster" # Pets
|
12 |
+
]
|
13 |
+
|
14 |
+
# Embedding model
|
15 |
+
embedder = pipeline('feature-extraction', model='distilbert-base-uncased')
|
16 |
+
|
17 |
+
def embed_words(words):
|
18 |
+
embeddings = embedder(words)
|
19 |
+
return np.array([np.mean(embedding[0], axis=0) for embedding in embeddings])
|
20 |
+
|
21 |
+
def cluster_words(words):
|
22 |
+
embeddings = embed_words(words)
|
23 |
+
kmeans = KMeans(n_clusters=4, random_state=0).fit(embeddings)
|
24 |
+
clusters = {i: [] for i in range(4)}
|
25 |
+
for word, label in zip(words, kmeans.labels_):
|
26 |
+
clusters[label].append(word)
|
27 |
+
return clusters
|
28 |
+
|
29 |
+
def main():
|
30 |
+
st.title("NYT Connections Solver")
|
31 |
+
|
32 |
+
if st.button("Generate Clusters"):
|
33 |
+
clusters = cluster_words(mock_words)
|
34 |
+
for i, words in clusters.items():
|
35 |
+
st.write(f"Group {i+1}: {', '.join(words)}")
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
scikit-learn
|
3 |
+
streamlit
|