Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload custom_pipeline.py
Browse files- custom_pipeline.py +987 -0
 
    	
        custom_pipeline.py
    ADDED
    
    | 
         @@ -0,0 +1,987 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 Harutatsu Akiyama and The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import inspect
         
     | 
| 16 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import PIL.Image
         
     | 
| 19 | 
         
            +
            import torch
         
     | 
| 20 | 
         
            +
            from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         
     | 
| 23 | 
         
            +
            from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
         
     | 
| 24 | 
         
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel
         
     | 
| 25 | 
         
            +
            from diffusers.models.attention_processor import (
         
     | 
| 26 | 
         
            +
                AttnProcessor2_0,
         
     | 
| 27 | 
         
            +
                FusedAttnProcessor2_0,
         
     | 
| 28 | 
         
            +
                LoRAAttnProcessor2_0,
         
     | 
| 29 | 
         
            +
                LoRAXFormersAttnProcessor,
         
     | 
| 30 | 
         
            +
                XFormersAttnProcessor,
         
     | 
| 31 | 
         
            +
            )
         
     | 
| 32 | 
         
            +
            from diffusers.models.lora import adjust_lora_scale_text_encoder
         
     | 
| 33 | 
         
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         
     | 
| 34 | 
         
            +
            from diffusers.utils import (
         
     | 
| 35 | 
         
            +
                USE_PEFT_BACKEND,
         
     | 
| 36 | 
         
            +
                deprecate,
         
     | 
| 37 | 
         
            +
                is_invisible_watermark_available,
         
     | 
| 38 | 
         
            +
                is_torch_xla_available,
         
     | 
| 39 | 
         
            +
                logging,
         
     | 
| 40 | 
         
            +
                replace_example_docstring,
         
     | 
| 41 | 
         
            +
                scale_lora_layers,
         
     | 
| 42 | 
         
            +
            )
         
     | 
| 43 | 
         
            +
            from diffusers.utils.torch_utils import randn_tensor
         
     | 
| 44 | 
         
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 45 | 
         
            +
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            if is_invisible_watermark_available():
         
     | 
| 49 | 
         
            +
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            if is_torch_xla_available():
         
     | 
| 52 | 
         
            +
                import torch_xla.core.xla_model as xm
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                XLA_AVAILABLE = True
         
     | 
| 55 | 
         
            +
            else:
         
     | 
| 56 | 
         
            +
                XLA_AVAILABLE = False
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 62 | 
         
            +
                Examples:
         
     | 
| 63 | 
         
            +
                    ```py
         
     | 
| 64 | 
         
            +
                    >>> import torch
         
     | 
| 65 | 
         
            +
                    >>> from diffusers import StableDiffusionXLInstructPix2PixPipeline
         
     | 
| 66 | 
         
            +
                    >>> from diffusers.utils import load_image
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    >>> resolution = 768
         
     | 
| 69 | 
         
            +
                    >>> image = load_image(
         
     | 
| 70 | 
         
            +
                    ...     "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
         
     | 
| 71 | 
         
            +
                    ... ).resize((resolution, resolution))
         
     | 
| 72 | 
         
            +
                    >>> edit_instruction = "Turn sky into a cloudy one"
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    >>> pipe = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
         
     | 
| 75 | 
         
            +
                    ...     "diffusers/sdxl-instructpix2pix-768", torch_dtype=torch.float16
         
     | 
| 76 | 
         
            +
                    ... ).to("cuda")
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    >>> edited_image = pipe(
         
     | 
| 79 | 
         
            +
                    ...     prompt=edit_instruction,
         
     | 
| 80 | 
         
            +
                    ...     image=image,
         
     | 
| 81 | 
         
            +
                    ...     height=resolution,
         
     | 
| 82 | 
         
            +
                    ...     width=resolution,
         
     | 
| 83 | 
         
            +
                    ...     guidance_scale=3.0,
         
     | 
| 84 | 
         
            +
                    ...     image_guidance_scale=1.5,
         
     | 
| 85 | 
         
            +
                    ...     num_inference_steps=30,
         
     | 
| 86 | 
         
            +
                    ... ).images[0]
         
     | 
| 87 | 
         
            +
                    >>> edited_image
         
     | 
| 88 | 
         
            +
                    ```
         
     | 
| 89 | 
         
            +
            """
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         
     | 
| 93 | 
         
            +
            def retrieve_latents(
         
     | 
| 94 | 
         
            +
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         
     | 
| 95 | 
         
            +
            ):
         
     | 
| 96 | 
         
            +
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         
     | 
| 97 | 
         
            +
                    return encoder_output.latent_dist.sample(generator)
         
     | 
| 98 | 
         
            +
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         
     | 
| 99 | 
         
            +
                    return encoder_output.latent_dist.mode()
         
     | 
| 100 | 
         
            +
                elif hasattr(encoder_output, "latents"):
         
     | 
| 101 | 
         
            +
                    return encoder_output.latents
         
     | 
| 102 | 
         
            +
                else:
         
     | 
| 103 | 
         
            +
                    raise AttributeError("Could not access latents of provided encoder_output")
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         
     | 
| 107 | 
         
            +
                """
         
     | 
| 108 | 
         
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         
     | 
| 109 | 
         
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         
     | 
| 110 | 
         
            +
                """
         
     | 
| 111 | 
         
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         
     | 
| 112 | 
         
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         
     | 
| 113 | 
         
            +
                # rescale the results from guidance (fixes overexposure)
         
     | 
| 114 | 
         
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         
     | 
| 115 | 
         
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         
     | 
| 116 | 
         
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         
     | 
| 117 | 
         
            +
                return noise_cfg
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
            class CosStableDiffusionXLInstructPix2PixPipeline(
         
     | 
| 121 | 
         
            +
                DiffusionPipeline,
         
     | 
| 122 | 
         
            +
                StableDiffusionMixin,
         
     | 
| 123 | 
         
            +
                TextualInversionLoaderMixin,
         
     | 
| 124 | 
         
            +
                FromSingleFileMixin,
         
     | 
| 125 | 
         
            +
                StableDiffusionXLLoraLoaderMixin,
         
     | 
| 126 | 
         
            +
            ):
         
     | 
| 127 | 
         
            +
                r"""
         
     | 
| 128 | 
         
            +
                Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         
     | 
| 131 | 
         
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                The pipeline also inherits the following loading methods:
         
     | 
| 134 | 
         
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         
     | 
| 135 | 
         
            +
                    - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
         
     | 
| 136 | 
         
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         
     | 
| 137 | 
         
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                Args:
         
     | 
| 140 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 141 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 142 | 
         
            +
                    text_encoder ([`CLIPTextModel`]):
         
     | 
| 143 | 
         
            +
                        Frozen text-encoder. Stable Diffusion XL uses the text portion of
         
     | 
| 144 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         
     | 
| 145 | 
         
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         
     | 
| 146 | 
         
            +
                    text_encoder_2 ([` CLIPTextModelWithProjection`]):
         
     | 
| 147 | 
         
            +
                        Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
         
     | 
| 148 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         
     | 
| 149 | 
         
            +
                        specifically the
         
     | 
| 150 | 
         
            +
                        [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
         
     | 
| 151 | 
         
            +
                        variant.
         
     | 
| 152 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 153 | 
         
            +
                        Tokenizer of class
         
     | 
| 154 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 155 | 
         
            +
                    tokenizer_2 (`CLIPTokenizer`):
         
     | 
| 156 | 
         
            +
                        Second Tokenizer of class
         
     | 
| 157 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 158 | 
         
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         
     | 
| 159 | 
         
            +
                    scheduler ([`SchedulerMixin`]):
         
     | 
| 160 | 
         
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         
     | 
| 161 | 
         
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         
     | 
| 162 | 
         
            +
                    requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
         
     | 
| 163 | 
         
            +
                        Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
         
     | 
| 164 | 
         
            +
                        of `stabilityai/stable-diffusion-xl-refiner-1-0`.
         
     | 
| 165 | 
         
            +
                    force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
         
     | 
| 166 | 
         
            +
                        Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
         
     | 
| 167 | 
         
            +
                        `stabilityai/stable-diffusion-xl-base-1-0`.
         
     | 
| 168 | 
         
            +
                    add_watermarker (`bool`, *optional*):
         
     | 
| 169 | 
         
            +
                        Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
         
     | 
| 170 | 
         
            +
                        watermark output images. If not defined, it will default to True if the package is installed, otherwise no
         
     | 
| 171 | 
         
            +
                        watermarker will be used.
         
     | 
| 172 | 
         
            +
                """
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
         
     | 
| 175 | 
         
            +
                _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def __init__(
         
     | 
| 178 | 
         
            +
                    self,
         
     | 
| 179 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 180 | 
         
            +
                    text_encoder: CLIPTextModel,
         
     | 
| 181 | 
         
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         
     | 
| 182 | 
         
            +
                    tokenizer: CLIPTokenizer,
         
     | 
| 183 | 
         
            +
                    tokenizer_2: CLIPTokenizer,
         
     | 
| 184 | 
         
            +
                    unet: UNet2DConditionModel,
         
     | 
| 185 | 
         
            +
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 186 | 
         
            +
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 187 | 
         
            +
                    add_watermarker: Optional[bool] = None,
         
     | 
| 188 | 
         
            +
                ):
         
     | 
| 189 | 
         
            +
                    super().__init__()
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    self.register_modules(
         
     | 
| 192 | 
         
            +
                        vae=vae,
         
     | 
| 193 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 194 | 
         
            +
                        text_encoder_2=text_encoder_2,
         
     | 
| 195 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 196 | 
         
            +
                        tokenizer_2=tokenizer_2,
         
     | 
| 197 | 
         
            +
                        unet=unet,
         
     | 
| 198 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 199 | 
         
            +
                    )
         
     | 
| 200 | 
         
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 201 | 
         
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         
     | 
| 202 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 203 | 
         
            +
                    self.default_sample_size = self.unet.config.sample_size
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                    add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    if add_watermarker:
         
     | 
| 208 | 
         
            +
                        self.watermark = StableDiffusionXLWatermarker()
         
     | 
| 209 | 
         
            +
                    else:
         
     | 
| 210 | 
         
            +
                        self.watermark = None
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                def encode_prompt(
         
     | 
| 213 | 
         
            +
                    self,
         
     | 
| 214 | 
         
            +
                    prompt: str,
         
     | 
| 215 | 
         
            +
                    prompt_2: Optional[str] = None,
         
     | 
| 216 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 217 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 218 | 
         
            +
                    do_classifier_free_guidance: bool = True,
         
     | 
| 219 | 
         
            +
                    negative_prompt: Optional[str] = None,
         
     | 
| 220 | 
         
            +
                    negative_prompt_2: Optional[str] = None,
         
     | 
| 221 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 222 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 223 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 224 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 225 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 226 | 
         
            +
                ):
         
     | 
| 227 | 
         
            +
                    r"""
         
     | 
| 228 | 
         
            +
                    Encodes the prompt into text encoder hidden states.
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    Args:
         
     | 
| 231 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 232 | 
         
            +
                            prompt to be encoded
         
     | 
| 233 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 234 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 235 | 
         
            +
                            used in both text-encoders
         
     | 
| 236 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 237 | 
         
            +
                            torch device
         
     | 
| 238 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 239 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 240 | 
         
            +
                        do_classifier_free_guidance (`bool`):
         
     | 
| 241 | 
         
            +
                            whether to use classifier free guidance or not
         
     | 
| 242 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 243 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 244 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 245 | 
         
            +
                            less than `1`).
         
     | 
| 246 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 247 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 248 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         
     | 
| 249 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 250 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 251 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 252 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 253 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 254 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 255 | 
         
            +
                            argument.
         
     | 
| 256 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 257 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 258 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 259 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 260 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 261 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 262 | 
         
            +
                            input argument.
         
     | 
| 263 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 264 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 265 | 
         
            +
                    """
         
     | 
| 266 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 269 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 270 | 
         
            +
                    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
         
     | 
| 271 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                        # dynamically adjust the LoRA scale
         
     | 
| 274 | 
         
            +
                        if self.text_encoder is not None:
         
     | 
| 275 | 
         
            +
                            if not USE_PEFT_BACKEND:
         
     | 
| 276 | 
         
            +
                                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         
     | 
| 277 | 
         
            +
                            else:
         
     | 
| 278 | 
         
            +
                                scale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                        if self.text_encoder_2 is not None:
         
     | 
| 281 | 
         
            +
                            if not USE_PEFT_BACKEND:
         
     | 
| 282 | 
         
            +
                                adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
         
     | 
| 283 | 
         
            +
                            else:
         
     | 
| 284 | 
         
            +
                                scale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 287 | 
         
            +
                        batch_size = 1
         
     | 
| 288 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 289 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 290 | 
         
            +
                    else:
         
     | 
| 291 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    # Define tokenizers and text encoders
         
     | 
| 294 | 
         
            +
                    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
         
     | 
| 295 | 
         
            +
                    text_encoders = (
         
     | 
| 296 | 
         
            +
                        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
         
     | 
| 297 | 
         
            +
                    )
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 300 | 
         
            +
                        prompt_2 = prompt_2 or prompt
         
     | 
| 301 | 
         
            +
                        # textual inversion: process multi-vector tokens if necessary
         
     | 
| 302 | 
         
            +
                        prompt_embeds_list = []
         
     | 
| 303 | 
         
            +
                        prompts = [prompt, prompt_2]
         
     | 
| 304 | 
         
            +
                        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
         
     | 
| 305 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 306 | 
         
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                            text_inputs = tokenizer(
         
     | 
| 309 | 
         
            +
                                prompt,
         
     | 
| 310 | 
         
            +
                                padding="max_length",
         
     | 
| 311 | 
         
            +
                                max_length=tokenizer.model_max_length,
         
     | 
| 312 | 
         
            +
                                truncation=True,
         
     | 
| 313 | 
         
            +
                                return_tensors="pt",
         
     | 
| 314 | 
         
            +
                            )
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                            text_input_ids = text_inputs.input_ids
         
     | 
| 317 | 
         
            +
                            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         
     | 
| 320 | 
         
            +
                                text_input_ids, untruncated_ids
         
     | 
| 321 | 
         
            +
                            ):
         
     | 
| 322 | 
         
            +
                                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
         
     | 
| 323 | 
         
            +
                                logger.warning(
         
     | 
| 324 | 
         
            +
                                    "The following part of your input was truncated because CLIP can only handle sequences up to"
         
     | 
| 325 | 
         
            +
                                    f" {tokenizer.model_max_length} tokens: {removed_text}"
         
     | 
| 326 | 
         
            +
                                )
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                            prompt_embeds = text_encoder(
         
     | 
| 329 | 
         
            +
                                text_input_ids.to(device),
         
     | 
| 330 | 
         
            +
                                output_hidden_states=True,
         
     | 
| 331 | 
         
            +
                            )
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         
     | 
| 334 | 
         
            +
                            pooled_prompt_embeds = prompt_embeds[0]
         
     | 
| 335 | 
         
            +
                            prompt_embeds = prompt_embeds.hidden_states[-2]
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                            prompt_embeds_list.append(prompt_embeds)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    # get unconditional embeddings for classifier free guidance
         
     | 
| 342 | 
         
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         
     | 
| 343 | 
         
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         
     | 
| 344 | 
         
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         
     | 
| 345 | 
         
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         
     | 
| 346 | 
         
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         
     | 
| 347 | 
         
            +
                        negative_prompt = negative_prompt or ""
         
     | 
| 348 | 
         
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                        uncond_tokens: List[str]
         
     | 
| 351 | 
         
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         
     | 
| 352 | 
         
            +
                            raise TypeError(
         
     | 
| 353 | 
         
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         
     | 
| 354 | 
         
            +
                                f" {type(prompt)}."
         
     | 
| 355 | 
         
            +
                            )
         
     | 
| 356 | 
         
            +
                        elif isinstance(negative_prompt, str):
         
     | 
| 357 | 
         
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         
     | 
| 358 | 
         
            +
                        elif batch_size != len(negative_prompt):
         
     | 
| 359 | 
         
            +
                            raise ValueError(
         
     | 
| 360 | 
         
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         
     | 
| 361 | 
         
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         
     | 
| 362 | 
         
            +
                                " the batch size of `prompt`."
         
     | 
| 363 | 
         
            +
                            )
         
     | 
| 364 | 
         
            +
                        else:
         
     | 
| 365 | 
         
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                        negative_prompt_embeds_list = []
         
     | 
| 368 | 
         
            +
                        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
         
     | 
| 369 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 370 | 
         
            +
                                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                            max_length = prompt_embeds.shape[1]
         
     | 
| 373 | 
         
            +
                            uncond_input = tokenizer(
         
     | 
| 374 | 
         
            +
                                negative_prompt,
         
     | 
| 375 | 
         
            +
                                padding="max_length",
         
     | 
| 376 | 
         
            +
                                max_length=max_length,
         
     | 
| 377 | 
         
            +
                                truncation=True,
         
     | 
| 378 | 
         
            +
                                return_tensors="pt",
         
     | 
| 379 | 
         
            +
                            )
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                            negative_prompt_embeds = text_encoder(
         
     | 
| 382 | 
         
            +
                                uncond_input.input_ids.to(device),
         
     | 
| 383 | 
         
            +
                                output_hidden_states=True,
         
     | 
| 384 | 
         
            +
                            )
         
     | 
| 385 | 
         
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         
     | 
| 386 | 
         
            +
                            negative_pooled_prompt_embeds = negative_prompt_embeds[0]
         
     | 
| 387 | 
         
            +
                            negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                        negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype
         
     | 
| 394 | 
         
            +
                    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
         
     | 
| 395 | 
         
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         
     | 
| 396 | 
         
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         
     | 
| 397 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 398 | 
         
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 401 | 
         
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         
     | 
| 402 | 
         
            +
                        seq_len = negative_prompt_embeds.shape[1]
         
     | 
| 403 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
         
     | 
| 404 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 405 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 408 | 
         
            +
                        bs_embed * num_images_per_prompt, -1
         
     | 
| 409 | 
         
            +
                    )
         
     | 
| 410 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 411 | 
         
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 412 | 
         
            +
                            bs_embed * num_images_per_prompt, -1
         
     | 
| 413 | 
         
            +
                        )
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         
     | 
| 418 | 
         
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         
     | 
| 419 | 
         
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         
     | 
| 420 | 
         
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         
     | 
| 421 | 
         
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         
     | 
| 422 | 
         
            +
                    # and should be between [0, 1]
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 425 | 
         
            +
                    extra_step_kwargs = {}
         
     | 
| 426 | 
         
            +
                    if accepts_eta:
         
     | 
| 427 | 
         
            +
                        extra_step_kwargs["eta"] = eta
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    # check if the scheduler accepts generator
         
     | 
| 430 | 
         
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 431 | 
         
            +
                    if accepts_generator:
         
     | 
| 432 | 
         
            +
                        extra_step_kwargs["generator"] = generator
         
     | 
| 433 | 
         
            +
                    return extra_step_kwargs
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.check_inputs
         
     | 
| 436 | 
         
            +
                def check_inputs(
         
     | 
| 437 | 
         
            +
                    self,
         
     | 
| 438 | 
         
            +
                    prompt,
         
     | 
| 439 | 
         
            +
                    callback_steps,
         
     | 
| 440 | 
         
            +
                    negative_prompt=None,
         
     | 
| 441 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 442 | 
         
            +
                    negative_prompt_embeds=None,
         
     | 
| 443 | 
         
            +
                    callback_on_step_end_tensor_inputs=None,
         
     | 
| 444 | 
         
            +
                ):
         
     | 
| 445 | 
         
            +
                    if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
         
     | 
| 446 | 
         
            +
                        raise ValueError(
         
     | 
| 447 | 
         
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         
     | 
| 448 | 
         
            +
                            f" {type(callback_steps)}."
         
     | 
| 449 | 
         
            +
                        )
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         
     | 
| 452 | 
         
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         
     | 
| 453 | 
         
            +
                    ):
         
     | 
| 454 | 
         
            +
                        raise ValueError(
         
     | 
| 455 | 
         
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         
     | 
| 456 | 
         
            +
                        )
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 459 | 
         
            +
                        raise ValueError(
         
     | 
| 460 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 461 | 
         
            +
                            " only forward one of the two."
         
     | 
| 462 | 
         
            +
                        )
         
     | 
| 463 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 464 | 
         
            +
                        raise ValueError(
         
     | 
| 465 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 466 | 
         
            +
                        )
         
     | 
| 467 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 468 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         
     | 
| 471 | 
         
            +
                        raise ValueError(
         
     | 
| 472 | 
         
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         
     | 
| 473 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 474 | 
         
            +
                        )
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         
     | 
| 477 | 
         
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         
     | 
| 478 | 
         
            +
                            raise ValueError(
         
     | 
| 479 | 
         
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         
     | 
| 480 | 
         
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         
     | 
| 481 | 
         
            +
                                f" {negative_prompt_embeds.shape}."
         
     | 
| 482 | 
         
            +
                            )
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         
     | 
| 485 | 
         
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         
     | 
| 486 | 
         
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         
     | 
| 487 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 488 | 
         
            +
                        raise ValueError(
         
     | 
| 489 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 490 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 491 | 
         
            +
                        )
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    if latents is None:
         
     | 
| 494 | 
         
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         
     | 
| 495 | 
         
            +
                    else:
         
     | 
| 496 | 
         
            +
                        latents = latents.to(device)
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         
     | 
| 499 | 
         
            +
                    latents = latents * self.scheduler.init_noise_sigma
         
     | 
| 500 | 
         
            +
                    return latents
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                def prepare_image_latents(
         
     | 
| 503 | 
         
            +
                    self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
         
     | 
| 504 | 
         
            +
                ):
         
     | 
| 505 | 
         
            +
                    if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
         
     | 
| 506 | 
         
            +
                        raise ValueError(
         
     | 
| 507 | 
         
            +
                            f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
         
     | 
| 508 | 
         
            +
                        )
         
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
                    image = image.to(device=device, dtype=dtype)
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                    batch_size = batch_size * num_images_per_prompt
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    if image.shape[1] == 4:
         
     | 
| 515 | 
         
            +
                        image_latents = image
         
     | 
| 516 | 
         
            +
                    else:
         
     | 
| 517 | 
         
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         
     | 
| 518 | 
         
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         
     | 
| 519 | 
         
            +
                        if needs_upcasting:
         
     | 
| 520 | 
         
            +
                            self.upcast_vae()
         
     | 
| 521 | 
         
            +
                            image = image.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                        image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                        # cast back to fp16 if needed
         
     | 
| 526 | 
         
            +
                        if needs_upcasting:
         
     | 
| 527 | 
         
            +
                            self.vae.to(dtype=torch.float16)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
         
     | 
| 530 | 
         
            +
                        # expand image_latents for batch_size
         
     | 
| 531 | 
         
            +
                        deprecation_message = (
         
     | 
| 532 | 
         
            +
                            f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
         
     | 
| 533 | 
         
            +
                            " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
         
     | 
| 534 | 
         
            +
                            " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
         
     | 
| 535 | 
         
            +
                            " your script to pass as many initial images as text prompts to suppress this warning."
         
     | 
| 536 | 
         
            +
                        )
         
     | 
| 537 | 
         
            +
                        deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
         
     | 
| 538 | 
         
            +
                        additional_image_per_prompt = batch_size // image_latents.shape[0]
         
     | 
| 539 | 
         
            +
                        image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
         
     | 
| 540 | 
         
            +
                    elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
         
     | 
| 541 | 
         
            +
                        raise ValueError(
         
     | 
| 542 | 
         
            +
                            f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
         
     | 
| 543 | 
         
            +
                        )
         
     | 
| 544 | 
         
            +
                    else:
         
     | 
| 545 | 
         
            +
                        image_latents = torch.cat([image_latents], dim=0)
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 548 | 
         
            +
                        uncond_image_latents = torch.zeros_like(image_latents)
         
     | 
| 549 | 
         
            +
                        image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
         
     | 
| 550 | 
         
            +
             
     | 
| 551 | 
         
            +
                    if image_latents.dtype != self.vae.dtype:
         
     | 
| 552 | 
         
            +
                        image_latents = image_latents.to(dtype=self.vae.dtype)
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                    return image_latents
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
         
     | 
| 557 | 
         
            +
                def _get_add_time_ids(
         
     | 
| 558 | 
         
            +
                    self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
         
     | 
| 559 | 
         
            +
                ):
         
     | 
| 560 | 
         
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                    passed_add_embed_dim = (
         
     | 
| 563 | 
         
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
         
     | 
| 564 | 
         
            +
                    )
         
     | 
| 565 | 
         
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         
     | 
| 568 | 
         
            +
                        raise ValueError(
         
     | 
| 569 | 
         
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         
     | 
| 570 | 
         
            +
                        )
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         
     | 
| 573 | 
         
            +
                    return add_time_ids
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
         
     | 
| 576 | 
         
            +
                def upcast_vae(self):
         
     | 
| 577 | 
         
            +
                    dtype = self.vae.dtype
         
     | 
| 578 | 
         
            +
                    self.vae.to(dtype=torch.float32)
         
     | 
| 579 | 
         
            +
                    use_torch_2_0_or_xformers = isinstance(
         
     | 
| 580 | 
         
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         
     | 
| 581 | 
         
            +
                        (
         
     | 
| 582 | 
         
            +
                            AttnProcessor2_0,
         
     | 
| 583 | 
         
            +
                            XFormersAttnProcessor,
         
     | 
| 584 | 
         
            +
                            LoRAXFormersAttnProcessor,
         
     | 
| 585 | 
         
            +
                            LoRAAttnProcessor2_0,
         
     | 
| 586 | 
         
            +
                            FusedAttnProcessor2_0,
         
     | 
| 587 | 
         
            +
                        ),
         
     | 
| 588 | 
         
            +
                    )
         
     | 
| 589 | 
         
            +
                    # if xformers or torch_2_0 is used attention block does not need
         
     | 
| 590 | 
         
            +
                    # to be in float32 which can save lots of memory
         
     | 
| 591 | 
         
            +
                    if use_torch_2_0_or_xformers:
         
     | 
| 592 | 
         
            +
                        self.vae.post_quant_conv.to(dtype)
         
     | 
| 593 | 
         
            +
                        self.vae.decoder.conv_in.to(dtype)
         
     | 
| 594 | 
         
            +
                        self.vae.decoder.mid_block.to(dtype)
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                @torch.no_grad()
         
     | 
| 597 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 598 | 
         
            +
                def __call__(
         
     | 
| 599 | 
         
            +
                    self,
         
     | 
| 600 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 601 | 
         
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 602 | 
         
            +
                    image: PipelineImageInput = None,
         
     | 
| 603 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 604 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 605 | 
         
            +
                    num_inference_steps: int = 100,
         
     | 
| 606 | 
         
            +
                    denoising_end: Optional[float] = None,
         
     | 
| 607 | 
         
            +
                    guidance_scale: float = 5.0,
         
     | 
| 608 | 
         
            +
                    image_guidance_scale: float = 1.5,
         
     | 
| 609 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 610 | 
         
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 611 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 612 | 
         
            +
                    eta: float = 0.0,
         
     | 
| 613 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 614 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 615 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 616 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 617 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 618 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 619 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 620 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 621 | 
         
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         
     | 
| 622 | 
         
            +
                    callback_steps: int = 1,
         
     | 
| 623 | 
         
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 624 | 
         
            +
                    guidance_rescale: float = 0.0,
         
     | 
| 625 | 
         
            +
                    original_size: Tuple[int, int] = None,
         
     | 
| 626 | 
         
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 627 | 
         
            +
                    target_size: Tuple[int, int] = None,
         
     | 
| 628 | 
         
            +
                ):
         
     | 
| 629 | 
         
            +
                    r"""
         
     | 
| 630 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                    Args:
         
     | 
| 633 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 634 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 635 | 
         
            +
                            instead.
         
     | 
| 636 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 637 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 638 | 
         
            +
                            used in both text-encoders
         
     | 
| 639 | 
         
            +
                        image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
         
     | 
| 640 | 
         
            +
                            The image(s) to modify with the pipeline.
         
     | 
| 641 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 642 | 
         
            +
                            The height in pixels of the generated image.
         
     | 
| 643 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 644 | 
         
            +
                            The width in pixels of the generated image.
         
     | 
| 645 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 646 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 647 | 
         
            +
                            expense of slower inference.
         
     | 
| 648 | 
         
            +
                        denoising_end (`float`, *optional*):
         
     | 
| 649 | 
         
            +
                            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
         
     | 
| 650 | 
         
            +
                            completed before it is intentionally prematurely terminated. As a result, the returned sample will
         
     | 
| 651 | 
         
            +
                            still retain a substantial amount of noise as determined by the discrete timesteps selected by the
         
     | 
| 652 | 
         
            +
                            scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
         
     | 
| 653 | 
         
            +
                            "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
         
     | 
| 654 | 
         
            +
                            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
         
     | 
| 655 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         
     | 
| 656 | 
         
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         
     | 
| 657 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 658 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 659 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 660 | 
         
            +
                            usually at the expense of lower image quality.
         
     | 
| 661 | 
         
            +
                        image_guidance_scale (`float`, *optional*, defaults to 1.5):
         
     | 
| 662 | 
         
            +
                            Image guidance scale is to push the generated image towards the initial image `image`. Image guidance
         
     | 
| 663 | 
         
            +
                            scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
         
     | 
| 664 | 
         
            +
                            generate images that are closely linked to the source image `image`, usually at the expense of lower
         
     | 
| 665 | 
         
            +
                            image quality. This pipeline requires a value of at least `1`.
         
     | 
| 666 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 667 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 668 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 669 | 
         
            +
                            less than `1`).
         
     | 
| 670 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 671 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 672 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
         
     | 
| 673 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 674 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 675 | 
         
            +
                        eta (`float`, *optional*, defaults to 0.0):
         
     | 
| 676 | 
         
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         
     | 
| 677 | 
         
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         
     | 
| 678 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 679 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 680 | 
         
            +
                            to make generation deterministic.
         
     | 
| 681 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 682 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 683 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 684 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 685 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 686 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 687 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 688 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 689 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 690 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 691 | 
         
            +
                            argument.
         
     | 
| 692 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 693 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 694 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 695 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 696 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 697 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 698 | 
         
            +
                            input argument.
         
     | 
| 699 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 700 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 701 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 702 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 703 | 
         
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
         
     | 
| 704 | 
         
            +
                            plain tuple.
         
     | 
| 705 | 
         
            +
                        callback (`Callable`, *optional*):
         
     | 
| 706 | 
         
            +
                            A function that will be called every `callback_steps` steps during inference. The function will be
         
     | 
| 707 | 
         
            +
                            called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
         
     | 
| 708 | 
         
            +
                        callback_steps (`int`, *optional*, defaults to 1):
         
     | 
| 709 | 
         
            +
                            The frequency at which the `callback` function will be called. If not specified, the callback will be
         
     | 
| 710 | 
         
            +
                            called at every step.
         
     | 
| 711 | 
         
            +
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 712 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 713 | 
         
            +
                            `self.processor` in
         
     | 
| 714 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 715 | 
         
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.0):
         
     | 
| 716 | 
         
            +
                            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
         
     | 
| 717 | 
         
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
         
     | 
| 718 | 
         
            +
                            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
         
     | 
| 719 | 
         
            +
                            Guidance rescale factor should fix overexposure when using zero terminal SNR.
         
     | 
| 720 | 
         
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 721 | 
         
            +
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         
     | 
| 722 | 
         
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         
     | 
| 723 | 
         
            +
                            explained in section 2.2 of
         
     | 
| 724 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 725 | 
         
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         
     | 
| 726 | 
         
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         
     | 
| 727 | 
         
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         
     | 
| 728 | 
         
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         
     | 
| 729 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 730 | 
         
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 731 | 
         
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         
     | 
| 732 | 
         
            +
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         
     | 
| 733 | 
         
            +
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 734 | 
         
            +
                        aesthetic_score (`float`, *optional*, defaults to 6.0):
         
     | 
| 735 | 
         
            +
                            Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
         
     | 
| 736 | 
         
            +
                            Part of SDXL's micro-conditioning as explained in section 2.2 of
         
     | 
| 737 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 738 | 
         
            +
                        negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
         
     | 
| 739 | 
         
            +
                            Part of SDXL's micro-conditioning as explained in section 2.2 of
         
     | 
| 740 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
         
     | 
| 741 | 
         
            +
                            simulate an aesthetic score of the generated image by influencing the negative text condition.
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                    Examples:
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                    Returns:
         
     | 
| 746 | 
         
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
         
     | 
| 747 | 
         
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         
     | 
| 748 | 
         
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         
     | 
| 749 | 
         
            +
                    """
         
     | 
| 750 | 
         
            +
                    # 0. Default height and width to unet
         
     | 
| 751 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 752 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    original_size = original_size or (height, width)
         
     | 
| 755 | 
         
            +
                    target_size = target_size or (height, width)
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 758 | 
         
            +
                    self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
         
     | 
| 759 | 
         
            +
             
     | 
| 760 | 
         
            +
                    if image is None:
         
     | 
| 761 | 
         
            +
                        raise ValueError("`image` input cannot be undefined.")
         
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 764 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 765 | 
         
            +
                        batch_size = 1
         
     | 
| 766 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 767 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 768 | 
         
            +
                    else:
         
     | 
| 769 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    device = self._execution_device
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 774 | 
         
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 775 | 
         
            +
                    # corresponds to doing no classifier free guidance.
         
     | 
| 776 | 
         
            +
                    do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                    # 3. Encode input prompt
         
     | 
| 779 | 
         
            +
                    text_encoder_lora_scale = (
         
     | 
| 780 | 
         
            +
                        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
         
     | 
| 781 | 
         
            +
                    )
         
     | 
| 782 | 
         
            +
                    (
         
     | 
| 783 | 
         
            +
                        prompt_embeds,
         
     | 
| 784 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 785 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 786 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 787 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 788 | 
         
            +
                        prompt=prompt,
         
     | 
| 789 | 
         
            +
                        prompt_2=prompt_2,
         
     | 
| 790 | 
         
            +
                        device=device,
         
     | 
| 791 | 
         
            +
                        num_images_per_prompt=num_images_per_prompt,
         
     | 
| 792 | 
         
            +
                        do_classifier_free_guidance=do_classifier_free_guidance,
         
     | 
| 793 | 
         
            +
                        negative_prompt=negative_prompt,
         
     | 
| 794 | 
         
            +
                        negative_prompt_2=negative_prompt_2,
         
     | 
| 795 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 796 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 797 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 798 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 799 | 
         
            +
                        lora_scale=text_encoder_lora_scale,
         
     | 
| 800 | 
         
            +
                    )
         
     | 
| 801 | 
         
            +
             
     | 
| 802 | 
         
            +
                    # 4. Preprocess image
         
     | 
| 803 | 
         
            +
                    image = self.image_processor.preprocess(image, height=height, width=width).to(device)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                    # 5. Prepare timesteps
         
     | 
| 806 | 
         
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         
     | 
| 807 | 
         
            +
                    timesteps = self.scheduler.timesteps
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                    # 6. Prepare Image latents
         
     | 
| 810 | 
         
            +
                    image_latents = self.prepare_image_latents(
         
     | 
| 811 | 
         
            +
                        image,
         
     | 
| 812 | 
         
            +
                        batch_size,
         
     | 
| 813 | 
         
            +
                        num_images_per_prompt,
         
     | 
| 814 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 815 | 
         
            +
                        device,
         
     | 
| 816 | 
         
            +
                        do_classifier_free_guidance,
         
     | 
| 817 | 
         
            +
                    )
         
     | 
| 818 | 
         
            +
                    
         
     | 
| 819 | 
         
            +
                    image_latents = image_latents * self.vae.config.scaling_factor
         
     | 
| 820 | 
         
            +
                    
         
     | 
| 821 | 
         
            +
                    # 7. Prepare latent variables
         
     | 
| 822 | 
         
            +
                    num_channels_latents = self.vae.config.latent_channels
         
     | 
| 823 | 
         
            +
                    latents = self.prepare_latents(
         
     | 
| 824 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 825 | 
         
            +
                        num_channels_latents,
         
     | 
| 826 | 
         
            +
                        height,
         
     | 
| 827 | 
         
            +
                        width,
         
     | 
| 828 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 829 | 
         
            +
                        device,
         
     | 
| 830 | 
         
            +
                        generator,
         
     | 
| 831 | 
         
            +
                        latents,
         
     | 
| 832 | 
         
            +
                    )
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    # 8. Check that shapes of latents and image match the UNet channels
         
     | 
| 835 | 
         
            +
                    num_channels_image = image_latents.shape[1]
         
     | 
| 836 | 
         
            +
                    if num_channels_latents + num_channels_image != self.unet.config.in_channels:
         
     | 
| 837 | 
         
            +
                        raise ValueError(
         
     | 
| 838 | 
         
            +
                            f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
         
     | 
| 839 | 
         
            +
                            f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
         
     | 
| 840 | 
         
            +
                            f" `num_channels_image`: {num_channels_image} "
         
     | 
| 841 | 
         
            +
                            f" = {num_channels_latents + num_channels_image}. Please verify the config of"
         
     | 
| 842 | 
         
            +
                            " `pipeline.unet` or your `image` input."
         
     | 
| 843 | 
         
            +
                        )
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         
     | 
| 846 | 
         
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                    # 10. Prepare added time ids & embeddings
         
     | 
| 849 | 
         
            +
                    add_text_embeds = pooled_prompt_embeds
         
     | 
| 850 | 
         
            +
                    if self.text_encoder_2 is None:
         
     | 
| 851 | 
         
            +
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         
     | 
| 852 | 
         
            +
                    else:
         
     | 
| 853 | 
         
            +
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
                    add_time_ids = self._get_add_time_ids(
         
     | 
| 856 | 
         
            +
                        original_size,
         
     | 
| 857 | 
         
            +
                        crops_coords_top_left,
         
     | 
| 858 | 
         
            +
                        target_size,
         
     | 
| 859 | 
         
            +
                        dtype=prompt_embeds.dtype,
         
     | 
| 860 | 
         
            +
                        text_encoder_projection_dim=text_encoder_projection_dim,
         
     | 
| 861 | 
         
            +
                    )
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 864 | 
         
            +
                        # The extra concat similar to how it's done in SD InstructPix2Pix.
         
     | 
| 865 | 
         
            +
                        prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
         
     | 
| 866 | 
         
            +
                        add_text_embeds = torch.cat(
         
     | 
| 867 | 
         
            +
                            [add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0
         
     | 
| 868 | 
         
            +
                        )
         
     | 
| 869 | 
         
            +
                        add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids], dim=0)
         
     | 
| 870 | 
         
            +
             
     | 
| 871 | 
         
            +
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 872 | 
         
            +
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 873 | 
         
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                    # 11. Denoising loop
         
     | 
| 876 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 877 | 
         
            +
                    if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
         
     | 
| 878 | 
         
            +
                        discrete_timestep_cutoff = int(
         
     | 
| 879 | 
         
            +
                            round(
         
     | 
| 880 | 
         
            +
                                self.scheduler.config.num_train_timesteps
         
     | 
| 881 | 
         
            +
                                - (denoising_end * self.scheduler.config.num_train_timesteps)
         
     | 
| 882 | 
         
            +
                            )
         
     | 
| 883 | 
         
            +
                        )
         
     | 
| 884 | 
         
            +
                        num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
         
     | 
| 885 | 
         
            +
                        timesteps = timesteps[:num_inference_steps]
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 888 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 889 | 
         
            +
                            # Expand the latents if we are doing classifier free guidance.
         
     | 
| 890 | 
         
            +
                            # The latents are expanded 3 times because for pix2pix the guidance
         
     | 
| 891 | 
         
            +
                            # is applied for both the text and the input image.
         
     | 
| 892 | 
         
            +
                            latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
         
     | 
| 893 | 
         
            +
             
     | 
| 894 | 
         
            +
                            # concat latents, image_latents in the channel dimension
         
     | 
| 895 | 
         
            +
                            scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 896 | 
         
            +
                            scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
         
     | 
| 897 | 
         
            +
             
     | 
| 898 | 
         
            +
                            # predict the noise residual
         
     | 
| 899 | 
         
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 900 | 
         
            +
                            noise_pred = self.unet(
         
     | 
| 901 | 
         
            +
                                scaled_latent_model_input,
         
     | 
| 902 | 
         
            +
                                t,
         
     | 
| 903 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 904 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 905 | 
         
            +
                                added_cond_kwargs=added_cond_kwargs,
         
     | 
| 906 | 
         
            +
                                return_dict=False,
         
     | 
| 907 | 
         
            +
                            )[0]
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
                            # perform guidance
         
     | 
| 910 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 911 | 
         
            +
                                noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
         
     | 
| 912 | 
         
            +
                                noise_pred = (
         
     | 
| 913 | 
         
            +
                                    noise_pred_uncond
         
     | 
| 914 | 
         
            +
                                    + guidance_scale * (noise_pred_text - noise_pred_image)
         
     | 
| 915 | 
         
            +
                                    + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
         
     | 
| 916 | 
         
            +
                                )
         
     | 
| 917 | 
         
            +
             
     | 
| 918 | 
         
            +
                            if do_classifier_free_guidance and guidance_rescale > 0.0:
         
     | 
| 919 | 
         
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         
     | 
| 920 | 
         
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 923 | 
         
            +
                            latents_dtype = latents.dtype
         
     | 
| 924 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 925 | 
         
            +
                            if latents.dtype != latents_dtype:
         
     | 
| 926 | 
         
            +
                                if torch.backends.mps.is_available():
         
     | 
| 927 | 
         
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 928 | 
         
            +
                                    latents = latents.to(latents_dtype)
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                            # call the callback, if provided
         
     | 
| 931 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 932 | 
         
            +
                                progress_bar.update()
         
     | 
| 933 | 
         
            +
                                if callback is not None and i % callback_steps == 0:
         
     | 
| 934 | 
         
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         
     | 
| 935 | 
         
            +
                                    callback(step_idx, t, latents)
         
     | 
| 936 | 
         
            +
             
     | 
| 937 | 
         
            +
                            if XLA_AVAILABLE:
         
     | 
| 938 | 
         
            +
                                xm.mark_step()
         
     | 
| 939 | 
         
            +
             
     | 
| 940 | 
         
            +
                    if not output_type == "latent":
         
     | 
| 941 | 
         
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         
     | 
| 942 | 
         
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         
     | 
| 943 | 
         
            +
             
     | 
| 944 | 
         
            +
                        if needs_upcasting:
         
     | 
| 945 | 
         
            +
                            self.upcast_vae()
         
     | 
| 946 | 
         
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 947 | 
         
            +
                        elif latents.dtype != self.vae.dtype:
         
     | 
| 948 | 
         
            +
                            if torch.backends.mps.is_available():
         
     | 
| 949 | 
         
            +
                                # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 950 | 
         
            +
                                self.vae = self.vae.to(latents.dtype)
         
     | 
| 951 | 
         
            +
             
     | 
| 952 | 
         
            +
                        # unscale/denormalize the latents
         
     | 
| 953 | 
         
            +
                        # denormalize with the mean and std if available and not None
         
     | 
| 954 | 
         
            +
                        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
         
     | 
| 955 | 
         
            +
                        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
         
     | 
| 956 | 
         
            +
                        if has_latents_mean and has_latents_std:
         
     | 
| 957 | 
         
            +
                            latents_mean = (
         
     | 
| 958 | 
         
            +
                                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 959 | 
         
            +
                            )
         
     | 
| 960 | 
         
            +
                            latents_std = (
         
     | 
| 961 | 
         
            +
                                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 962 | 
         
            +
                            )
         
     | 
| 963 | 
         
            +
                            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
         
     | 
| 964 | 
         
            +
                        else:
         
     | 
| 965 | 
         
            +
                            latents = latents / self.vae.config.scaling_factor
         
     | 
| 966 | 
         
            +
             
     | 
| 967 | 
         
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                        # cast back to fp16 if needed
         
     | 
| 970 | 
         
            +
                        if needs_upcasting:
         
     | 
| 971 | 
         
            +
                            self.vae.to(dtype=torch.float16)
         
     | 
| 972 | 
         
            +
                    else:
         
     | 
| 973 | 
         
            +
                        return StableDiffusionXLPipelineOutput(images=latents)
         
     | 
| 974 | 
         
            +
             
     | 
| 975 | 
         
            +
                    # apply watermark if available
         
     | 
| 976 | 
         
            +
                    if self.watermark is not None:
         
     | 
| 977 | 
         
            +
                        image = self.watermark.apply_watermark(image)
         
     | 
| 978 | 
         
            +
             
     | 
| 979 | 
         
            +
                    image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 980 | 
         
            +
             
     | 
| 981 | 
         
            +
                    # Offload all models
         
     | 
| 982 | 
         
            +
                    self.maybe_free_model_hooks()
         
     | 
| 983 | 
         
            +
             
     | 
| 984 | 
         
            +
                    if not return_dict:
         
     | 
| 985 | 
         
            +
                        return (image,)
         
     | 
| 986 | 
         
            +
             
     | 
| 987 | 
         
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         
     |