File size: 13,314 Bytes
5eca0b2 16bb651 5eca0b2 0130234 5eca0b2 0130234 5eca0b2 0130234 5eca0b2 16bb651 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 0f5bdf8 5eca0b2 6c5f678 5eca0b2 16bb651 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 16bb651 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 6c5f678 5eca0b2 16bb651 6c5f678 5eca0b2 16bb651 6c5f678 5eca0b2 6c5f678 16bb651 5eca0b2 16bb651 5eca0b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
from PIL import Image
import numpy as np
from typing import Dict, List, Tuple, Union, Optional, Any
import base64
from io import BytesIO
import re
import logging
from transformers import AutoModel, AutoProcessor
import requests
import matplotlib.pyplot as plt
import os
import json
IMG_SIZE = 1024
class JinaEmbeddingsClient:
"""
Minimal wrapper for https://api.jina.ai/v1/embeddings
"""
API_URL = "https://api.jina.ai/v1/embeddings"
def __init__(
self,
model: str = "jina-embeddings-v4",
return_multivector: bool = True,
task: str = "retrieval.query",
timeout: int = 30,
) -> None:
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer Not Set",
}
self.base_payload = {
"model": model,
"return_multivector": return_multivector,
"task": task,
}
self.timeout = timeout
def encode_text(self, texts: List[str], **kwargs) -> Dict[str, Any]:
"""
Encode a batch of texts.
"""
payload = [{"text": t} for t in texts]
res = self._post(payload)
return self._as_tensors(res["data"])
def encode_image(self, images: List[Union[str, bytes, 'Image.Image']], **kwargs) -> List:
"""
Encode a batch of images given as
• URLs (str) – https://…/image.png
• base64 strings (str) – iVBORw0…
• raw bytes – b'\xff\xd8…' (base64‑encoded automatically)
• PIL Image.Image instances (converted to base64 PNG)
"""
def pil_image_to_base64_str(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
processed = []
for img in images:
if isinstance(img, bytes):
img = base64.b64encode(img).decode()
elif hasattr(img, "save"): # PIL Image
img = pil_image_to_base64_str(img)
# else assume str URL or base64 string
processed.append({"image": img})
res = self._post(processed)
# Assuming _post returns {'data': [...]}, convert embeddings to tensors as needed
return [torch.tensor(item['embeddings']) for item in res['data']]
def _post(self, input_batch: List[Dict[str, str]]) -> Dict[str, Any]:
payload = {**self.base_payload, "input": input_batch}
resp = requests.post(
self.API_URL, headers=self.headers, json=payload, timeout=self.timeout
)
resp.raise_for_status()
return resp.json()
def set_api_key(self, api_key: str) -> None:
"""
Set the API key for authentication.
"""
if not api_key:
raise ValueError("API key must not be empty.")
self.headers["Authorization"] = f"Bearer {api_key}"
@staticmethod
def _as_tensors(data: List[Dict[str, Any]]) -> List[torch.Tensor]:
"""
Convert the `"data"` array of the API response into a list
of `torch.Tensor`s (one tensor per text / image you sent).
Each tensor’s shape is (n_vectors, dim). When you set
`return_multivector=False` you’ll just get shape (1, dim).
"""
tensors: List[torch.Tensor] = []
for item in data: # 1‑to‑1 with inputs
emb_lists = item["embeddings"] # list‑of‑lists → (N,D)
tensors.append(torch.tensor(emb_lists, dtype=torch.float32))
return tensors
class JinaV4SimilarityMapper:
"""
Generates interactive similarity maps between query tokens and images using Jina Embedding v4.
Enables visualizing which parts of an image correspond to specific words in the query.
"""
def __init__(
self,
model_name: str = "jinaai/jina-embeddings-v4",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
heatmap_alpha: float = 0.6,
num_vectors: int = 128,
client_type: str = "local",
):
"""
Initialize the mapper with Jina Embedding v4.
Args:
model_name: Model name from Hugging Face hub.
device: Compute device (GPU recommended for performance).
patch_size: Size of image patches for embedding.
heatmap_alpha: Transparency for the similarity heatmap.
"""
self.model_name = model_name
self.device = device
self.logger = logging.getLogger("JinaV4SimMapper")
self.logger.info(f"Initializing model on {device}")
assert client_type in ["local", "web"], "client_type must be 'local' or 'web'"
if client_type == "local":
self.model = AutoModel.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
self.model.eval()
else:
self.model = JinaEmbeddingsClient()
self.preprocessor = AutoProcessor.from_pretrained(
self.model_name,
trust_remote_code=True
)
self.heatmap_alpha = heatmap_alpha
self.num_vectors = num_vectors
self.colormap = plt.cm.get_cmap("jet") # High-contrast colormap for UI
def process_query(self, query: str) -> Tuple[List[str], torch.Tensor, Dict[int, str]]:
"""
Process query to get tokens, multivector embeddings, and token-index map.
Args:
query: Input query text.
Returns:
tokens: List of query tokens.
embeddings: Multivector embeddings [num_tokens/num_vectors, embed_dim].
token_map: Mapping from index to token.
"""
query_embeddings = self.model.encode_text(
texts=[query],
task="retrieval",
prompt_name="query",
return_multivector=True,
truncate_dim=self.num_vectors
)
query_embeddings = query_embeddings[0] # [num_tokens/num_vectors, embed_dim]
print(f"Query embeddings shape: {query_embeddings.shape}")
preprocessor_results = self.preprocessor.process_texts(
texts=[query],
prefix="Query"
)
input_ids = preprocessor_results["input_ids"]
tokens = input_ids[0].tolist()
tokens = self.preprocessor.tokenizer.convert_ids_to_tokens(tokens)
print(f"Tokens: {tokens}")
tokens = tokens[2:] # remove prefix
query_embeddings = query_embeddings[2:] # remove prefix
num_tokens = query_embeddings.shape[0]
assert len(tokens) == num_tokens
tokens = [tok.replace("Ġ", "") for tok in tokens]
token_map = {i: tok for i, tok in enumerate(tokens)}
print(f"Token map: {token_map}")
return tokens, query_embeddings, token_map
def process_image(self, image: Union[str, bytes, Image.Image]) -> Tuple[Image.Image, torch.Tensor, Tuple[int, int], Tuple[int, int]]:
"""
Process image to get patch embeddings in multivector format.
Args:
image: Image path, URL, bytes, or PIL Image.
Returns:
pil_image: Original PIL image.
patch_embeddings: Image patch embeddings [num_patches/num_vectors, embed_dim].
size: Original image size (width, height).
grid_size: Patch grid dimensions (height, width) after merge.
"""
pil_image = self._load_image(image)
proc_out = self.preprocessor.process_images(images=[pil_image])
# Get the grid dimensions from preprocessor
image_grid_thw = proc_out["image_grid_thw"]
_, height, width = image_grid_thw[0].tolist()
# Account for 2x2 merge
grid_height = height // 2
grid_width = width // 2
size = pil_image.size
image_embeddings = self.model.encode_image(
images=[pil_image],
task="retrieval",
return_multivector=True,
max_pixels=1024*1024,
truncate_dim=self.num_vectors
)
image_embeddings = image_embeddings[0]
# Remove special tokens
vision_start_position_from_start = 4
vision_end_position_from_end = 7
image_embeddings = image_embeddings[vision_start_position_from_start:-vision_end_position_from_end]
return pil_image, image_embeddings, size, (grid_height, grid_width)
def _load_image(self, image: Union[str, bytes, Image.Image]) -> Image.Image:
"""Load image from various formats (URL, path, bytes, PIL Image)."""
if isinstance(image, Image.Image):
pil_image = image.convert("RGB")
elif isinstance(image, str):
if image.startswith(("http://", "https://")):
response = requests.get(image)
response.raise_for_status()
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
else:
pil_image = Image.open(image).convert("RGB")
elif isinstance(image, bytes):
pil_image = Image.open(BytesIO(image)).convert("RGB")
else:
raise ValueError(f"Unsupported image format: {type(image)}")
# Resize to fixed width while preserving aspect ratio
original_width, original_height = pil_image.size
aspect_ratio = original_height / original_width
new_height = int(IMG_SIZE * aspect_ratio)
pil_image = pil_image.resize((IMG_SIZE, new_height), Image.Resampling.LANCZOS)
return pil_image
def compute_similarity_map(
self,
token_embedding: torch.Tensor,
patch_embeddings: torch.Tensor,
aggregation: str = "mean"
) -> torch.Tensor:
"""
Compute similarity between a query token and image patches.
Args:
token_embedding: Token multivector [embed_dim].
patch_embeddings: Image patch multivectors [num_vectors/num_patches, embed_dim].
Returns:
similarity scores [num_vectors/num_patches].
"""
num_patches = patch_embeddings.shape[0]
token_expanded = token_embedding.expand(num_patches, -1)
similarity_scores = torch.cosine_similarity(token_expanded, patch_embeddings, dim=1)
return similarity_scores
def generate_heatmap(self, image: Image.Image, similarity_map: torch.Tensor, size: Tuple[int, int], grid_size: Tuple[int, int]) -> str:
"""
Generate a heatmap overlay on the image and return as base64.
Args:
image: Original PIL image.
similarity_map: Similarity scores [num_patches].
size: Original image size (width, height).
grid_size: Patch grid dimensions (height, width).
"""
# num_patches = similarity_map.shape[0]
grid_height, grid_width = grid_size
# Normalize to [0, 1]
similarity_map = (similarity_map - similarity_map.min()) / (
similarity_map.max() - similarity_map.min() + 1e-8
)
# Reshape to 2D grid
similarity_2d = similarity_map.reshape(grid_height, grid_width).cpu().numpy()
# Create & resize heatmap
heatmap = (self.colormap(similarity_2d) * 255).astype(np.uint8)
heatmap = Image.fromarray(heatmap[..., :3], mode="RGB")
heatmap = heatmap.resize(size, resample=Image.BICUBIC)
# Blend with original image
original_rgba = image.convert("RGBA")
heatmap_rgba = heatmap.convert("RGBA")
blended = Image.blend(original_rgba, heatmap_rgba, alpha=self.heatmap_alpha)
# Encode to base64
buffer = BytesIO()
blended.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def get_token_similarity_maps(
self,
query: str,
image: Union[str, bytes, Image.Image],
aggregation: str = "mean"
) -> Tuple[List[str], Dict[str, str]]:
"""
Main method to generate similarity maps for all query tokens.
"""
_, query_embeddings, token_map = self.process_query(query)
pil_image, patch_embeddings, size, grid_size = self.process_image(image)
heatmaps = {}
tokens_for_ui = []
for idx, token in token_map.items():
if self._should_filter_token(token):
continue
tokens_for_ui.append(token)
token_embedding = query_embeddings[idx]
sim_map = self.compute_similarity_map(
token_embedding, patch_embeddings, aggregation
)
heatmap_b64 = self.generate_heatmap(pil_image, sim_map, size, grid_size)
heatmaps[token] = heatmap_b64
return tokens_for_ui, heatmaps
def _should_filter_token(self, token: str) -> bool:
"""Filter out irrelevant tokens (punctuation, special symbols)."""
if token.strip() == "" or re.match(r'^\s*$|^[^\w\s]+$|^<.*>$', token):
return True
return False
|