File size: 6,519 Bytes
ba90c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity

from pytorch3d.renderer import (
    PerspectiveCameras,
    look_at_view_transform
)

# customized
import sys
sys.path.append(".")

from lib.constants import VIEWPOINTS

# ---------------- UTILS ----------------------

def degree_to_radian(d):
    return d * np.pi / 180

def radian_to_degree(r):
    return 180 * r / np.pi

def xyz_to_polar(xyz):
    """ assume y-axis is the up axis """
    
    x, y, z = xyz
    
    theta = 180 * np.arccos(z) / np.pi
    phi = 180 * np.arccos(y) / np.pi

    return theta, phi

def polar_to_xyz(theta, phi, dist):
    """ assume y-axis is the up axis """

    theta = degree_to_radian(theta)
    phi = degree_to_radian(phi)

    x = np.sin(phi) * np.sin(theta) * dist
    y = np.cos(phi) * dist
    z = np.sin(phi) * np.cos(theta) * dist

    return [x, y, z]


# ---------------- VIEWPOINTS ----------------------


def filter_viewpoints(pre_viewpoints: dict, viewpoints: dict):
    """ return the binary mask of viewpoints to be filtered """

    filter_mask = [0 for _ in viewpoints.keys()]
    for i, v in viewpoints.items():
        x_v, y_v, z_v = polar_to_xyz(v["azim"], 90 - v["elev"], v["dist"])

        for _, pv in pre_viewpoints.items():
            x_pv, y_pv, z_pv = polar_to_xyz(pv["azim"], 90 - pv["elev"], pv["dist"])
            sim = cosine_similarity(
                np.array([[x_v, y_v, z_v]]),
                np.array([[x_pv, y_pv, z_pv]])
            )[0, 0]

            if sim > 0.9:
                filter_mask[i] = 1

    return filter_mask


def init_viewpoints(mode, sample_space, init_dist, init_elev, principle_directions, 
    use_principle=True, use_shapenet=False, use_objaverse=False):

    if mode == "predefined":

        (
            dist_list, 
            elev_list, 
            azim_list, 
            sector_list
        ) = init_predefined_viewpoints(sample_space, init_dist, init_elev)

    elif mode == "hemisphere":

        (
            dist_list, 
            elev_list, 
            azim_list, 
            sector_list
        ) = init_hemisphere_viewpoints(sample_space, init_dist)

    else:
        raise NotImplementedError()

    # punishments for views -> in case always selecting the same view
    view_punishments = [1 for _ in range(len(dist_list))]

    if use_principle:

        (
            dist_list, 
            elev_list, 
            azim_list, 
            sector_list,
            view_punishments
        ) = init_principle_viewpoints(
            principle_directions, 
            dist_list, 
            elev_list, 
            azim_list, 
            sector_list,
            view_punishments,
            use_shapenet,
            use_objaverse
        )

    return dist_list, elev_list, azim_list, sector_list, view_punishments


def init_principle_viewpoints(
    principle_directions, 
    dist_list, 
    elev_list, 
    azim_list, 
    sector_list,
    view_punishments,
    use_shapenet=False,
    use_objaverse=False
):

    if use_shapenet:
        key = "shapenet"

        pre_elev_list = [v for v in VIEWPOINTS[key]["elev"]]
        pre_azim_list = [v for v in VIEWPOINTS[key]["azim"]]
        pre_sector_list = [v for v in VIEWPOINTS[key]["sector"]]

        num_principle = 10
        pre_dist_list = [dist_list[0] for _ in range(num_principle)]
        pre_view_punishments = [0 for _ in range(num_principle)]

    elif use_objaverse:
        key = "objaverse"

        pre_elev_list = [v for v in VIEWPOINTS[key]["elev"]]
        pre_azim_list = [v for v in VIEWPOINTS[key]["azim"]]
        pre_sector_list = [v for v in VIEWPOINTS[key]["sector"]]

        num_principle = 10
        pre_dist_list = [dist_list[0] for _ in range(num_principle)]
        pre_view_punishments = [0 for _ in range(num_principle)]
    else:
        num_principle = 6
        pre_elev_list = [v for v in VIEWPOINTS[num_principle]["elev"]]
        pre_azim_list = [v for v in VIEWPOINTS[num_principle]["azim"]]
        pre_sector_list = [v for v in VIEWPOINTS[num_principle]["sector"]]
        pre_dist_list = [dist_list[0] for _ in range(num_principle)]
        pre_view_punishments = [0 for _ in range(num_principle)]

    dist_list = pre_dist_list + dist_list
    elev_list = pre_elev_list + elev_list
    azim_list = pre_azim_list + azim_list
    sector_list = pre_sector_list + sector_list
    view_punishments = pre_view_punishments + view_punishments

    return dist_list, elev_list, azim_list, sector_list, view_punishments


def init_predefined_viewpoints(sample_space, init_dist, init_elev):
    
    viewpoints = VIEWPOINTS[sample_space]

    assert sample_space == len(viewpoints["sector"])

    dist_list = [init_dist for _ in range(sample_space)] # always the same dist
    elev_list = [viewpoints["elev"][i] for i in range(sample_space)]
    azim_list = [viewpoints["azim"][i] for i in range(sample_space)]
    sector_list = [viewpoints["sector"][i] for i in range(sample_space)]

    return dist_list, elev_list, azim_list, sector_list


def init_hemisphere_viewpoints(sample_space, init_dist):
    """
        y is up-axis
    """

    num_points = 2 * sample_space
    ga = np.pi * (3. - np.sqrt(5.))  # golden angle in radians

    flags = []
    elev_list = [] # degree
    azim_list = [] # degree

    for i in range(num_points):
        y = 1 - (i / float(num_points - 1)) * 2  # y goes from 1 to -1

        # only take the north hemisphere
        if y >= 0: 
            flags.append(True)
        else:
            flags.append(False)

        theta = ga * i  # golden angle increment

        elev_list.append(radian_to_degree(np.arcsin(y)))
        azim_list.append(radian_to_degree(theta))

        radius = np.sqrt(1 - y * y)  # radius at y
        x = np.cos(theta) * radius
        z = np.sin(theta) * radius

    elev_list = [elev_list[i] for i in range(len(elev_list)) if flags[i]]
    azim_list = [azim_list[i] for i in range(len(azim_list)) if flags[i]]

    dist_list = [init_dist for _ in elev_list]
    sector_list = ["good" for _ in elev_list] # HACK don't define sector names for now

    return dist_list, elev_list, azim_list, sector_list


# ---------------- CAMERAS ----------------------


def init_camera(dist, elev, azim, image_size, device):
    R, T = look_at_view_transform(dist, elev, azim)
    image_size = torch.tensor([image_size, image_size]).unsqueeze(0)
    cameras = PerspectiveCameras(R=R, T=T, device=device, image_size=image_size)

    return cameras