File size: 17,014 Bytes
ba90c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import torch

import cv2
import random

import numpy as np

from torchvision import transforms

from pytorch3d.renderer import TexturesUV
from pytorch3d.ops import interpolate_face_attributes

from PIL import Image

from tqdm import tqdm

# customized
import sys
sys.path.append(".")

from lib.camera_helper import init_camera
from lib.render_helper import init_renderer, render
from lib.shading_helper import (
    BlendParams,
    init_soft_phong_shader, 
    init_flat_texel_shader,
)
from lib.vis_helper import visualize_outputs, visualize_quad_mask
from lib.constants import *


def get_all_4_locations(values_y, values_x):
    y_0 = torch.floor(values_y)
    y_1 = torch.ceil(values_y)
    x_0 = torch.floor(values_x)
    x_1 = torch.ceil(values_x)

    return torch.cat([y_0, y_0, y_1, y_1], 0).long(), torch.cat([x_0, x_1, x_0, x_1], 0).long()


def compose_quad_mask(new_mask_image, update_mask_image, old_mask_image, device):
    """
        compose quad mask:
            -> 0: background
            -> 1: old
            -> 2: update
            -> 3: new
    """

    new_mask_tensor = transforms.ToTensor()(new_mask_image).to(device)
    update_mask_tensor = transforms.ToTensor()(update_mask_image).to(device)
    old_mask_tensor = transforms.ToTensor()(old_mask_image).to(device)

    all_mask_tensor = new_mask_tensor + update_mask_tensor + old_mask_tensor

    quad_mask_tensor = torch.zeros_like(all_mask_tensor)
    quad_mask_tensor[old_mask_tensor == 1] = 1
    quad_mask_tensor[update_mask_tensor == 1] = 2
    quad_mask_tensor[new_mask_tensor == 1] = 3

    return old_mask_tensor, update_mask_tensor, new_mask_tensor, all_mask_tensor, quad_mask_tensor


def compute_view_heat(similarity_tensor, quad_mask_tensor):
    num_total_pixels = quad_mask_tensor.reshape(-1).shape[0]
    heat = 0
    for idx in QUAD_WEIGHTS:
        heat += (quad_mask_tensor == idx).sum() * QUAD_WEIGHTS[idx] / num_total_pixels

    return heat


def select_viewpoint(selected_view_ids, view_punishments,
    mode, dist_list, elev_list, azim_list, sector_list, view_idx,
    similarity_texture_cache, exist_texture,
    mesh, faces, verts_uvs,
    image_size, faces_per_pixel,
    init_image_dir, mask_image_dir, normal_map_dir, depth_map_dir, similarity_map_dir,
    device, use_principle=False
):
    if mode == "sequential":
        
        num_views = len(dist_list)

        dist = dist_list[view_idx % num_views]
        elev = elev_list[view_idx % num_views]
        azim = azim_list[view_idx % num_views]
        sector = sector_list[view_idx % num_views]
        
        selected_view_ids.append(view_idx % num_views)

    elif mode == "heuristic":

        if use_principle and view_idx < 6:

            selected_view_idx = view_idx

        else:

            selected_view_idx = None
            max_heat = 0

            print("=> selecting next view...")
            view_heat_list = []
            for sample_idx in tqdm(range(len(dist_list))):

                view_heat, *_ = render_one_view_and_build_masks(dist_list[sample_idx], elev_list[sample_idx], azim_list[sample_idx], 
                    sample_idx, sample_idx, view_punishments,
                    similarity_texture_cache, exist_texture,
                    mesh, faces, verts_uvs,
                    image_size, faces_per_pixel,
                    init_image_dir, mask_image_dir, normal_map_dir, depth_map_dir, similarity_map_dir,
                    device)

                if view_heat > max_heat:
                    selected_view_idx = sample_idx
                    max_heat = view_heat

                view_heat_list.append(view_heat.item())

            print(view_heat_list)
            print("select view {} with heat {}".format(selected_view_idx, max_heat))

 
        dist = dist_list[selected_view_idx]
        elev = elev_list[selected_view_idx]
        azim = azim_list[selected_view_idx]
        sector = sector_list[selected_view_idx]

        selected_view_ids.append(selected_view_idx)

        view_punishments[selected_view_idx] *= 0.01

    elif mode == "random":

        selected_view_idx = random.choice(range(len(dist_list)))

        dist = dist_list[selected_view_idx]
        elev = elev_list[selected_view_idx]
        azim = azim_list[selected_view_idx]
        sector = sector_list[selected_view_idx]
        
        selected_view_ids.append(selected_view_idx)

    else:
        raise NotImplementedError()

    return dist, elev, azim, sector, selected_view_ids, view_punishments


@torch.no_grad()
def build_backproject_mask(mesh, faces, verts_uvs, 
    cameras, reference_image, faces_per_pixel, 
    image_size, uv_size, device):
    # construct pixel UVs
    renderer_scaled = init_renderer(cameras,
        shader=init_soft_phong_shader(
            camera=cameras,
            blend_params=BlendParams(),
            device=device),
        image_size=image_size, 
        faces_per_pixel=faces_per_pixel
    )
    fragments_scaled = renderer_scaled.rasterizer(mesh)

    # get UV coordinates for each pixel
    faces_verts_uvs = verts_uvs[faces.textures_idx]

    pixel_uvs = interpolate_face_attributes(
        fragments_scaled.pix_to_face, fragments_scaled.bary_coords, faces_verts_uvs
    )  # NxHsxWsxKx2
    pixel_uvs = pixel_uvs.permute(0, 3, 1, 2, 4).reshape(-1, 2)

    texture_locations_y, texture_locations_x = get_all_4_locations(
        (1 - pixel_uvs[:, 1]).reshape(-1) * (uv_size - 1),
        pixel_uvs[:, 0].reshape(-1) * (uv_size - 1)
    )

    K = faces_per_pixel

    texture_values = torch.from_numpy(np.array(reference_image.resize((image_size, image_size)))).float() / 255.
    texture_values = texture_values.to(device).unsqueeze(0).expand([4, -1, -1, -1]).unsqueeze(0).expand([K, -1, -1, -1, -1])

    # texture
    texture_tensor = torch.zeros(uv_size, uv_size, 3).to(device)
    texture_tensor[texture_locations_y, texture_locations_x, :] = texture_values.reshape(-1, 3)

    return texture_tensor[:, :, 0]


@torch.no_grad()
def build_diffusion_mask(mesh_stuff, 
    renderer, exist_texture, similarity_texture_cache, target_value, device, image_size, 
    smooth_mask=False, view_threshold=0.01):

    mesh, faces, verts_uvs = mesh_stuff
    mask_mesh = mesh.clone() # NOTE in-place operation - DANGER!!!

    # visible mask => the whole region
    exist_texture_expand = exist_texture.unsqueeze(0).unsqueeze(-1).expand(-1, -1, -1, 3).to(device)
    mask_mesh.textures = TexturesUV(
        maps=torch.ones_like(exist_texture_expand),
        faces_uvs=faces.textures_idx[None, ...],
        verts_uvs=verts_uvs[None, ...],
        sampling_mode="nearest"
    )
    # visible_mask_tensor, *_ = render(mask_mesh, renderer)
    visible_mask_tensor, _, similarity_map_tensor, *_ = render(mask_mesh, renderer)
    # faces that are too rotated away from the viewpoint will be treated as invisible
    valid_mask_tensor = (similarity_map_tensor >= view_threshold).float()
    visible_mask_tensor *= valid_mask_tensor

    # nonexist mask <=> new mask
    exist_texture_expand = exist_texture.unsqueeze(0).unsqueeze(-1).expand(-1, -1, -1, 3).to(device)
    mask_mesh.textures = TexturesUV(
        maps=1 - exist_texture_expand,
        faces_uvs=faces.textures_idx[None, ...],
        verts_uvs=verts_uvs[None, ...],
        sampling_mode="nearest"
    )
    new_mask_tensor, *_ = render(mask_mesh, renderer)
    new_mask_tensor *= valid_mask_tensor

    # exist mask => visible mask - new mask
    exist_mask_tensor = visible_mask_tensor - new_mask_tensor
    exist_mask_tensor[exist_mask_tensor < 0] = 0 # NOTE dilate can lead to overflow

    # all update mask
    mask_mesh.textures = TexturesUV(
        maps=(
            similarity_texture_cache.argmax(0) == target_value
            # # only consider the views that have already appeared before
            # similarity_texture_cache[0:target_value+1].argmax(0) == target_value
        ).float().unsqueeze(0).unsqueeze(-1).expand(-1, -1, -1, 3).to(device),
        faces_uvs=faces.textures_idx[None, ...],
        verts_uvs=verts_uvs[None, ...],
        sampling_mode="nearest"
    )
    all_update_mask_tensor, *_ = render(mask_mesh, renderer)

    # current update mask => intersection between all update mask and exist mask
    update_mask_tensor = exist_mask_tensor * all_update_mask_tensor

    # keep mask => exist mask - update mask
    old_mask_tensor = exist_mask_tensor - update_mask_tensor

    # convert
    new_mask = new_mask_tensor[0].cpu().float().permute(2, 0, 1)
    new_mask = transforms.ToPILImage()(new_mask).convert("L")

    update_mask = update_mask_tensor[0].cpu().float().permute(2, 0, 1)
    update_mask = transforms.ToPILImage()(update_mask).convert("L")

    old_mask = old_mask_tensor[0].cpu().float().permute(2, 0, 1)
    old_mask = transforms.ToPILImage()(old_mask).convert("L")

    exist_mask = exist_mask_tensor[0].cpu().float().permute(2, 0, 1)
    exist_mask = transforms.ToPILImage()(exist_mask).convert("L")

    return new_mask, update_mask, old_mask, exist_mask


@torch.no_grad()
def render_one_view(mesh,
    dist, elev, azim,
    image_size, faces_per_pixel,
    device):

    # render the view
    cameras = init_camera(
        dist, elev, azim,
        image_size, device
    )
    renderer = init_renderer(cameras,
        shader=init_soft_phong_shader(
            camera=cameras,
            blend_params=BlendParams(),
            device=device),
        image_size=image_size, 
        faces_per_pixel=faces_per_pixel
    )

    init_images_tensor, normal_maps_tensor, similarity_tensor, depth_maps_tensor, fragments = render(mesh, renderer)
    
    return (
        cameras, renderer,
        init_images_tensor, normal_maps_tensor, similarity_tensor, depth_maps_tensor, fragments
    )


@torch.no_grad()
def build_similarity_texture_cache_for_all_views(mesh, faces, verts_uvs,
    dist_list, elev_list, azim_list,
    image_size, image_size_scaled, uv_size, faces_per_pixel,
    device):

    num_candidate_views = len(dist_list)
    similarity_texture_cache = torch.zeros(num_candidate_views, uv_size, uv_size).to(device)

    print("=> building similarity texture cache for all views...")
    for i in tqdm(range(num_candidate_views)):
        cameras, _, _, _, similarity_tensor, _, _ = render_one_view(mesh,
            dist_list[i], elev_list[i], azim_list[i],
            image_size, faces_per_pixel, device)

        similarity_texture_cache[i] = build_backproject_mask(mesh, faces, verts_uvs, 
            cameras, transforms.ToPILImage()(similarity_tensor[0, :, :, 0]).convert("RGB"), faces_per_pixel,
            image_size_scaled, uv_size, device)

    return similarity_texture_cache


@torch.no_grad()
def render_one_view_and_build_masks(dist, elev, azim, 
    selected_view_idx, view_idx, view_punishments,
    similarity_texture_cache, exist_texture,
    mesh, faces, verts_uvs,
    image_size, faces_per_pixel,
    init_image_dir, mask_image_dir, normal_map_dir, depth_map_dir, similarity_map_dir,
    device, save_intermediate=False, smooth_mask=False, view_threshold=0.01):
    
    # render the view
    (
        cameras, renderer,
        init_images_tensor, normal_maps_tensor, similarity_tensor, depth_maps_tensor, fragments
    ) = render_one_view(mesh,
        dist, elev, azim,
        image_size, faces_per_pixel,
        device
    )
    
    init_image = init_images_tensor[0].cpu()
    init_image = init_image.permute(2, 0, 1)
    init_image = transforms.ToPILImage()(init_image).convert("RGB")

    normal_map = normal_maps_tensor[0].cpu()
    normal_map = normal_map.permute(2, 0, 1)
    normal_map = transforms.ToPILImage()(normal_map).convert("RGB")

    depth_map = depth_maps_tensor[0].cpu().numpy()
    depth_map = Image.fromarray(depth_map).convert("L")

    similarity_map = similarity_tensor[0, :, :, 0].cpu()
    similarity_map = transforms.ToPILImage()(similarity_map).convert("L")


    flat_renderer = init_renderer(cameras,
        shader=init_flat_texel_shader(
            camera=cameras,
            device=device),
        image_size=image_size,
        faces_per_pixel=faces_per_pixel
    )
    new_mask_image, update_mask_image, old_mask_image, exist_mask_image = build_diffusion_mask(
        (mesh, faces, verts_uvs), 
        flat_renderer, exist_texture, similarity_texture_cache, selected_view_idx, device, image_size, 
        smooth_mask=smooth_mask, view_threshold=view_threshold
    )
    # NOTE the view idx is the absolute idx in the sample space (i.e. `selected_view_idx`)
    # it should match with `similarity_texture_cache`

    (
        old_mask_tensor, 
        update_mask_tensor, 
        new_mask_tensor, 
        all_mask_tensor, 
        quad_mask_tensor
    ) = compose_quad_mask(new_mask_image, update_mask_image, old_mask_image, device)

    view_heat = compute_view_heat(similarity_tensor, quad_mask_tensor)
    view_heat *= view_punishments[selected_view_idx]

    # save intermediate results
    if save_intermediate:
        init_image.save(os.path.join(init_image_dir, "{}.png".format(view_idx)))
        normal_map.save(os.path.join(normal_map_dir, "{}.png".format(view_idx)))
        depth_map.save(os.path.join(depth_map_dir, "{}.png".format(view_idx)))
        similarity_map.save(os.path.join(similarity_map_dir, "{}.png".format(view_idx)))

        new_mask_image.save(os.path.join(mask_image_dir, "{}_new.png".format(view_idx)))
        update_mask_image.save(os.path.join(mask_image_dir, "{}_update.png".format(view_idx)))
        old_mask_image.save(os.path.join(mask_image_dir, "{}_old.png".format(view_idx)))
        exist_mask_image.save(os.path.join(mask_image_dir, "{}_exist.png".format(view_idx)))

        visualize_quad_mask(mask_image_dir, quad_mask_tensor, view_idx, view_heat, device)

    return (
        view_heat,
        renderer, cameras, fragments,
        init_image, normal_map, depth_map, 
        init_images_tensor, normal_maps_tensor, depth_maps_tensor, similarity_tensor, 
        old_mask_image, update_mask_image, new_mask_image, 
        old_mask_tensor, update_mask_tensor, new_mask_tensor, all_mask_tensor, quad_mask_tensor
    )



@torch.no_grad()
def backproject_from_image(mesh, faces, verts_uvs, cameras, 
    reference_image, new_mask_image, update_mask_image, 
    init_texture, exist_texture,
    image_size, uv_size, faces_per_pixel,
    device):

    # construct pixel UVs
    renderer_scaled = init_renderer(cameras,
        shader=init_soft_phong_shader(
            camera=cameras,
            blend_params=BlendParams(),
            device=device),
        image_size=image_size, 
        faces_per_pixel=faces_per_pixel
    )
    fragments_scaled = renderer_scaled.rasterizer(mesh)

    # get UV coordinates for each pixel
    faces_verts_uvs = verts_uvs[faces.textures_idx]

    pixel_uvs = interpolate_face_attributes(
        fragments_scaled.pix_to_face, fragments_scaled.bary_coords, faces_verts_uvs
    )  # NxHsxWsxKx2
    pixel_uvs = pixel_uvs.permute(0, 3, 1, 2, 4).reshape(pixel_uvs.shape[-2], pixel_uvs.shape[1], pixel_uvs.shape[2], 2)

    # the update mask has to be on top of the diffusion mask
    new_mask_image_tensor = transforms.ToTensor()(new_mask_image).to(device).unsqueeze(-1)
    update_mask_image_tensor = transforms.ToTensor()(update_mask_image).to(device).unsqueeze(-1)
    
    project_mask_image_tensor = torch.logical_or(update_mask_image_tensor, new_mask_image_tensor).float()
    project_mask_image = project_mask_image_tensor * 255.
    project_mask_image = Image.fromarray(project_mask_image[0, :, :, 0].cpu().numpy().astype(np.uint8))
    
    project_mask_image_scaled = project_mask_image.resize(
        (image_size, image_size),
        Image.Resampling.NEAREST
    )
    project_mask_image_tensor_scaled = transforms.ToTensor()(project_mask_image_scaled).to(device)

    pixel_uvs_masked = pixel_uvs[project_mask_image_tensor_scaled == 1]

    texture_locations_y, texture_locations_x = get_all_4_locations(
        (1 - pixel_uvs_masked[:, 1]).reshape(-1) * (uv_size - 1), 
        pixel_uvs_masked[:, 0].reshape(-1) * (uv_size - 1)
    )
    
    K = pixel_uvs.shape[0]
    project_mask_image_tensor_scaled = project_mask_image_tensor_scaled[:, None, :, :, None].repeat(1, 4, 1, 1, 3)

    texture_values = torch.from_numpy(np.array(reference_image.resize((image_size, image_size))))
    texture_values = texture_values.to(device).unsqueeze(0).expand([4, -1, -1, -1]).unsqueeze(0).expand([K, -1, -1, -1, -1])
    
    texture_values_masked = texture_values.reshape(-1, 3)[project_mask_image_tensor_scaled.reshape(-1, 3) == 1].reshape(-1, 3)

    # texture
    texture_tensor = torch.from_numpy(np.array(init_texture)).to(device)
    texture_tensor[texture_locations_y, texture_locations_x, :] = texture_values_masked
    
    init_texture = Image.fromarray(texture_tensor.cpu().numpy().astype(np.uint8))

    # update texture cache
    exist_texture[texture_locations_y, texture_locations_x] = 1

    return init_texture, project_mask_image, exist_texture