File size: 10,845 Bytes
5f58b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)

from share import *
import config

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random

from PIL import Image
from torchvision import transforms

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from cldm.model import create_model, load_state_dict
from models.ControlNet.ldm.models.diffusion.ddim import DDIMSampler


def init_model():
    model = create_model(BASE_DIR+'/models/cldm_v15.yaml').cpu()
    state_dict = load_state_dict(BASE_DIR+'/models/control_sd15_depth.pth')
    model.load_state_dict(state_dict, strict=False)
    # model.load_state_dict(state_dict)
    model = model.cuda()
    ddim_sampler = DDIMSampler(model)

    return model, ddim_sampler


@torch.no_grad()
def process(model, ddim_sampler, input_image, prompt, a_prompt, n_prompt, num_samples, 
    ddim_steps, scale, seed, eta, 
    strength=1.0, detected_map=None, unknown_mask=None, save_memory=False, depth_pad=10):

    """
        unknown mask has to be an array of shape (H, W) - should has values of (0, 255)
    """
    
    with torch.no_grad():
        H, W, C = input_image.shape

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        

        if save_memory:
            model.low_vram_shift(is_diffusing=True)

        # start from noising the input image
        x0 = Image.fromarray(input_image).convert("RGB")
        x0 = np.array(x0)

        x0 = torch.from_numpy(x0).permute(2, 0, 1).float().to(model.device)
        x0 = x0.unsqueeze(0).repeat(num_samples, 1, 1, 1)
        x0 = (x0 / 127.5) - 1.0 # NOTE input image must be normalized to [-1, 1]

        # encode input image
        # NOTE ControlNet doesn't accept the raw input image
        x0 = model.encode_first_stage(x0)
        x0 = model.get_first_stage_encoding(x0).detach()

        ddim_sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=eta, verbose=False, strength=strength)
        ddim_steps = int(ddim_steps * strength) # actually DEPRECATED

        # add noises to the maximum
        ddim_steps_tensor = torch.full((x0.shape[0],), ddim_sampler.ddim_timesteps[-1]).to(model.device)
        x_T = model.q_sample(x0, ddim_steps_tensor)

        # control
        if detected_map is None:
            detected_map, _ = apply_midas(resize_image(input_image, H))
            detected_map = HWC3(detected_map)

        detected_map_resized = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)

        control = torch.from_numpy(detected_map_resized).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        # if unknown_mask is not None:
        #     # HACK
        #     # unknown_mask_dilate = cv2.dilate(unknown_mask, kernel=np.ones((5, 5), np.uint8), iterations=2)
        #     unknown_mask_dilate = cv2.dilate(unknown_mask, kernel=np.ones((5, 5), np.uint8), iterations=1)

        #     # depth_mask = np.zeros_like(detected_map[..., 0])
        #     # depth_mask[detected_map[..., 0] != 0] = 1 # 1 -> object, 0 -> background
        #     # reversed_depth_mask = 1 - depth_mask # 0 -> object, 1 -> background

        #     # diffusion_mask = reversed_depth_mask + unknown_mask
        #     # unknown_mask_dilate = cv2.dilate(diffusion_mask, kernel=np.ones((5, 5), np.uint8), iterations=2)

        #     unknown_mask_dilate = Image.fromarray(unknown_mask_dilate.astype(np.uint8)).convert("L")
        #     unknown_mask_dilate = unknown_mask_dilate.resize((H // 8, W // 8), Image.NEAREST)
        #     unknown_mask_dilate = transforms.ToTensor()(unknown_mask_dilate).to(model.device)
        #     unknown_mask_dilate = unknown_mask_dilate.repeat(4, 1, 1)

        #     # only contains 0 and 1
        #     assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1]))

        # else:
        #     unknown_mask_dilate = None

    
        if unknown_mask is not None:

            # # target: unknown region
            # unknown_mask_image = np.copy(unknown_mask) # should be 0 - 255
            # unknown_mask = unknown_mask.astype(np.float32)
            # unknown_mask /= 255 # normalize it to 0 - 1

            # target: unknown region + background
            # HACK basically generate everything except known region
            detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
            detected_map_np = np.array(detected_map_image)
            background_mask = detected_map_np == depth_pad # bool
            background_mask = background_mask.astype(np.float32) * 255 # 0 - 255
            unknown_mask_image = unknown_mask + background_mask

            # unknown_mask is still the unknown region
            # will be used later to compose the generated region
            unknown_mask = unknown_mask.astype(np.float32)
            unknown_mask /= 255 # normalize it to 0 - 1

            compose_flag = True

        else:

            detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
            detected_map_np = np.array(detected_map_image)

            # # target: non-background region
            # unknown_mask = (detected_map_np != depth_pad).astype(np.uint8)
            # unknown_mask_image = (unknown_mask * 255.).astype(np.uint8)
            # # Image.fromarray(unknown_mask_image).save("unknown.png")

            # target: everything
            unknown_mask = np.ones_like(detected_map_np)
            unknown_mask_image = (unknown_mask * 255.).astype(np.uint8)

            compose_flag = False


        # HACK
        # unknown_mask_dilate = np.copy(unknown_mask_image)
        unknown_mask_dilate = cv2.dilate(unknown_mask_image, kernel=np.ones((5, 5), np.uint8), iterations=2)
        unknown_mask_dilate = Image.fromarray(unknown_mask_dilate.astype(np.uint8)).convert("L")
        unknown_mask_dilate = unknown_mask_dilate.resize((H // 8, W // 8), Image.NEAREST)
        unknown_mask_dilate = transforms.ToTensor()(unknown_mask_dilate).to(model.device)
        unknown_mask_dilate = unknown_mask_dilate.repeat(4, 1, 1)

        # HACK make sure the mask only contains 0 and 1
        try:
            assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1])), set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist())
        except AssertionError:
            unknown_mask_dilate = torch.round(unknown_mask_dilate)

            assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1])), set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist())

        samples, intermediates = ddim_sampler.sample(
            ddim_steps, num_samples,
            shape, cond, x0=x0, x_T=x_T, mask=unknown_mask_dilate,
            verbose=False, eta=eta,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=un_cond
        )

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = []
        for i in range(num_samples):
            sample = x_samples[i]

            # # HACK manually compose cropped generated region with the known region
            # if compose_flag:
            #     # # unknown region + known region
            #     # input_image = Image.fromarray(input_image).convert("RGB")
            #     # input_image = np.array(input_image)

            #     # mask = np.repeat(unknown_mask[..., None], 3, axis=2)

            #     # new_sample = np.zeros_like(sample)
            #     # new_sample[mask == 1] = sample[mask == 1]
            #     # new_sample[mask == 0] = input_image[mask == 0]

            #     # sample = new_sample

            #     # non-background region
            #     detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
            #     detected_map_np = np.array(detected_map_image)

            #     background_mask = (detected_map_np == depth_pad).astype(np.uint8)
            #     sample[background_mask == 1] = 255

            results.append(sample)

    return results


if __name__ == "__main__":
    model, ddim_sampler = init_model()

    block = gr.Blocks().queue()
    with block:
        with gr.Row():
            gr.Markdown("## Control Stable Diffusion with Depth Maps")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                prompt = gr.Textbox(label="Prompt")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                    image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                    detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
                    ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                    scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                    seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                    eta = gr.Number(label="eta (DDIM)", value=0.0)
                    a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                    n_prompt = gr.Textbox(label="Negative Prompt",
                                        value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
            with gr.Column():
                result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
        ips = [model, ddim_sampler, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta]
        run_button.click(fn=process, inputs=ips, outputs=[result_gallery])


    block.launch(server_name='0.0.0.0')