Spaces:
Sleeping
Sleeping
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
from diffusers.configuration_utils import register_to_config | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import ( | |
LoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
) | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
rescale_noise_cfg, | |
) | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
CONFIG_NAME, | |
BaseOutput, | |
deprecate, | |
logging, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from transformers import CLIPTextModel, CLIPTokenizer | |
logger = logging.get_logger(__name__) | |
class VaeImageProcrssorAOV(VaeImageProcessor): | |
""" | |
Image processor for VAE AOV. | |
Args: | |
do_resize (`bool`, *optional*, defaults to `True`): | |
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. | |
vae_scale_factor (`int`, *optional*, defaults to `8`): | |
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. | |
resample (`str`, *optional*, defaults to `lanczos`): | |
Resampling filter to use when resizing the image. | |
do_normalize (`bool`, *optional*, defaults to `True`): | |
Whether to normalize the image to [-1,1]. | |
""" | |
config_name = CONFIG_NAME | |
def __init__( | |
self, | |
do_resize: bool = True, | |
vae_scale_factor: int = 8, | |
resample: str = "lanczos", | |
do_normalize: bool = True, | |
): | |
super().__init__() | |
def postprocess( | |
self, | |
image: torch.FloatTensor, | |
output_type: str = "pil", | |
do_denormalize: Optional[List[bool]] = None, | |
do_gamma_correction: bool = True, | |
): | |
if not isinstance(image, torch.Tensor): | |
raise ValueError( | |
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" | |
) | |
if output_type not in ["latent", "pt", "np", "pil"]: | |
deprecation_message = ( | |
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " | |
"`pil`, `np`, `pt`, `latent`" | |
) | |
deprecate( | |
"Unsupported output_type", | |
"1.0.0", | |
deprecation_message, | |
standard_warn=False, | |
) | |
output_type = "np" | |
if output_type == "latent": | |
return image | |
if do_denormalize is None: | |
do_denormalize = [self.config.do_normalize] * image.shape[0] | |
image = torch.stack( | |
[ | |
self.denormalize(image[i]) if do_denormalize[i] else image[i] | |
for i in range(image.shape[0]) | |
] | |
) | |
# Gamma correction | |
if do_gamma_correction: | |
image = torch.pow(image, 1.0 / 2.2) | |
if output_type == "pt": | |
return image | |
image = self.pt_to_numpy(image) | |
if output_type == "np": | |
return image | |
if output_type == "pil": | |
return self.numpy_to_pil(image) | |
def preprocess_normal( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
) -> torch.Tensor: | |
image = torch.stack([image], axis=0) | |
return image | |
class StableDiffusionAOVPipelineOutput(BaseOutput): | |
""" | |
Output class for Stable Diffusion AOV pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, | |
num_channels)`. | |
nsfw_content_detected (`List[bool]`) | |
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or | |
`None` if safety checking could not be performed. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
class StableDiffusionAOVMatEstPipeline( | |
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin | |
): | |
r""" | |
Pipeline for AOVs. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcrssorAOV( | |
vae_scale_factor=self.vae_scale_factor | |
) | |
self.register_to_config() | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_ prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
""" | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if ( | |
hasattr(self.text_encoder.config, "use_attention_mask") | |
and self.text_encoder.config.use_attention_mask | |
): | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if ( | |
hasattr(self.text_encoder.config, "use_attention_mask") | |
and self.text_encoder.config.use_attention_mask | |
): | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=self.text_encoder.dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
# pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] | |
prompt_embeds = torch.cat( | |
[prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] | |
) | |
return prompt_embeds | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_image_latents( | |
self, | |
image, | |
batch_size, | |
num_images_per_prompt, | |
dtype, | |
device, | |
do_classifier_free_guidance, | |
generator=None, | |
): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
image_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.mode() | |
for i in range(batch_size) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.mode() | |
if ( | |
batch_size > image_latents.shape[0] | |
and batch_size % image_latents.shape[0] == 0 | |
): | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate( | |
"len(prompt) != len(image)", | |
"1.0.0", | |
deprecation_message, | |
standard_warn=False, | |
) | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat( | |
[image_latents] * additional_image_per_prompt, dim=0 | |
) | |
elif ( | |
batch_size > image_latents.shape[0] | |
and batch_size % image_latents.shape[0] != 0 | |
): | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
if do_classifier_free_guidance: | |
uncond_image_latents = torch.zeros_like(image_latents) | |
image_latents = torch.cat( | |
[image_latents, image_latents, uncond_image_latents], dim=0 | |
) | |
return image_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
photo: Union[ | |
torch.FloatTensor, | |
PIL.Image.Image, | |
np.ndarray, | |
List[torch.FloatTensor], | |
List[PIL.Image.Image], | |
List[np.ndarray], | |
] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 100, | |
required_aovs: List[str] = ["albedo"], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
use_default_scaling_factor: Optional[bool] = False, | |
guidance_scale: float = 0.0, | |
image_guidance_scale: float = 0.0, | |
guidance_rescale: float = 0.0, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept | |
image latents as `image`, but if passing latents directly it is not encoded again. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
image_guidance_scale (`float`, *optional*, defaults to 1.5): | |
Push the generated image towards the inital `image`. Image guidance scale is enabled by setting | |
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely | |
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a | |
value of at least `1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Examples: | |
```py | |
>>> import PIL | |
>>> import requests | |
>>> import torch | |
>>> from io import BytesIO | |
>>> from diffusers import StableDiffusionInstructPix2PixPipeline | |
>>> def download_image(url): | |
... response = requests.get(url) | |
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
>>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" | |
>>> image = download_image(img_url).resize((512, 512)) | |
>>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "make the mountains snowy" | |
>>> image = pipe(prompt=prompt, image=image).images[0] | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
# 0. Check inputs | |
self.check_inputs( | |
prompt, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
# 1. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
do_classifier_free_guidance = ( | |
guidance_scale > 1.0 and image_guidance_scale >= 1.0 | |
) | |
# check if scheduler is in sigmas space | |
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") | |
# 2. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# 3. Preprocess image | |
# Normalize image to [-1,1] | |
preprocessed_photo = self.image_processor.preprocess(photo) | |
# 4. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare Image latents | |
image_latents = self.prepare_image_latents( | |
preprocessed_photo, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
do_classifier_free_guidance, | |
generator, | |
) | |
image_latents = image_latents * self.vae.config.scaling_factor | |
height, width = image_latents.shape[-2:] | |
height = height * self.vae_scale_factor | |
width = width * self.vae_scale_factor | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.out_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Check that shapes of latents and image match the UNet channels | |
num_channels_image = image_latents.shape[1] | |
if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_image`: {num_channels_image} " | |
f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
" `pipeline.unet` or your `image` input." | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Expand the latents if we are doing classifier free guidance. | |
# The latents are expanded 3 times because for pix2pix the guidance\ | |
# is applied for both the text and the input image. | |
latent_model_input = ( | |
torch.cat([latents] * 3) if do_classifier_free_guidance else latents | |
) | |
# concat latents, image_latents in the channel dimension | |
scaled_latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
scaled_latent_model_input = torch.cat( | |
[scaled_latent_model_input, image_latents], dim=1 | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
scaled_latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
( | |
noise_pred_text, | |
noise_pred_image, | |
noise_pred_uncond, | |
) = noise_pred.chunk(3) | |
noise_pred = ( | |
noise_pred_uncond | |
+ guidance_scale * (noise_pred_text - noise_pred_image) | |
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond) | |
) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg( | |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
aov_latents = latents / self.vae.config.scaling_factor | |
aov = self.vae.decode(aov_latents, return_dict=False)[0] | |
do_denormalize = [True] * aov.shape[0] | |
aov_name = required_aovs[0] | |
if aov_name == "albedo" or aov_name == "irradiance": | |
do_gamma_correction = True | |
else: | |
do_gamma_correction = False | |
if aov_name == "roughness" or aov_name == "metallic": | |
aov = aov[:, 0:1].repeat(1, 3, 1, 1) | |
aov = self.image_processor.postprocess( | |
aov, | |
output_type=output_type, | |
do_denormalize=do_denormalize, | |
do_gamma_correction=do_gamma_correction, | |
) | |
aovs = [aov] | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
return StableDiffusionAOVPipelineOutput(images=aovs) |