File size: 5,908 Bytes
3f68a6f
 
 
 
 
 
 
6f6cb0a
ff0e3f2
 
062506d
3f68a6f
 
 
 
ff0e3f2
 
 
 
 
 
 
 
 
 
 
3f68a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062506d
 
 
3f68a6f
 
 
 
 
 
 
 
062506d
3f68a6f
 
 
062506d
3f68a6f
 
 
 
 
 
ff0e3f2
 
 
 
3f68a6f
 
 
 
 
ff0e3f2
 
3f68a6f
ff0e3f2
062506d
ff0e3f2
 
6f6cb0a
ff0e3f2
062506d
ff0e3f2
6f6cb0a
3f68a6f
062506d
 
ff0e3f2
 
 
 
 
 
 
 
 
 
 
 
 
3f68a6f
 
 
 
 
 
 
ff0e3f2
3f68a6f
 
ff0e3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062506d
 
 
ff0e3f2
 
 
 
 
 
 
 
 
062506d
 
 
 
 
 
 
 
ff0e3f2
 
062506d
ff0e3f2
 
062506d
 
ff0e3f2
 
 
 
 
062506d
ff0e3f2
3f68a6f
 
ff0e3f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
import gdown
from datetime import datetime
from pathlib import Path
import zipfile

load_dotenv(override=True)

def push(text):
    try:
        requests.post(
            "https://api.pushover.net/1/messages.json",
            data={
                "token": os.getenv("PUSHOVER_TOKEN"),
                "user": os.getenv("PUSHOVER_USER"),
                "message": text,
            }
        )
    except Exception as e:
        print(f"Pushover error: {e}")

def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

def record_unknown_question(question):
    push(f"Recording {question}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {"type": "string"},
            "name": {"type": "string"},
            "notes": {"type": "string"}
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Record a question that couldn't be answered",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {"type": "string"}
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [
    {"type": "function", "function": record_user_details_json},
    {"type": "function", "function": record_unknown_question_json}
]

class Me:
    def __init__(self):
        self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.name = "Jacob Isaacson"
        self.session_log = []
        Path("chat_logs").mkdir(exist_ok=True)

        # Download LinkedIn PDF
        gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False)
        reader = PdfReader("linkedin.pdf")
        self.linkedin = "".join(page.extract_text() or "" for page in reader.pages)

        # Download summary.txt
        gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False)
        with open("summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()

        self.archive_logs()

    def system_prompt(self):
        return f"""You are acting as {self.name}. You're answering questions on {self.name}'s website about his career, experience, and skills.
Be professional and conversational, as if talking to a potential employer or client.

If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`.

## Summary:
{self.summary}

## LinkedIn Profile:
{self.linkedin}
"""

    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool", "tool_call_id": tool_call.id, "content": json.dumps(result)})
        return results

    def chat_stream(self, message, history):
        messages = [{"role": "system", "content": self.system_prompt()}]
        for user, assistant in history:
            messages.append({"role": "user", "content": user})
            messages.append({"role": "assistant", "content": assistant})

        messages.append({"role": "user", "content": message})
        self.session_log.append({"role": "user", "content": message})

        stream = self.openai.chat.completions.create(
            model="gpt-4o",
            messages=messages,
            tools=tools,
            stream=True
        )

        full_response = ""
        for chunk in stream:
            delta = chunk.choices[0].delta
            if hasattr(delta, "content") and delta.content:
                full_response += delta.content
                yield full_response

        # Append a helpful follow-up message
        full_response += "\n\n💬 Let me know if you’d like to follow up or need help connecting with Jacob."

        self.session_log.append({"role": "assistant", "content": full_response})
        self.save_session_log()

    def save_session_log(self):
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"chat_logs/session_{timestamp}.json"
        with open(filename, "w", encoding="utf-8") as f:
            json.dump(self.session_log, f, indent=2)

    def archive_logs(self):
        """Create a zip archive of all previous logs — replaceable for weekly automation"""
        zip_path = "chat_logs/weekly_archive.zip"
        with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as archive:
            for log_file in Path("chat_logs").glob("session_*.json"):
                archive.write(log_file, arcname=log_file.name)

# Instantiate assistant
me = Me()

# Build UI
with gr.Blocks(title="Jacob Isaacson Chatbot") as iface:
    with gr.Row():
        gr.Image("jacob.png", width=100, show_label=False)
        gr.Markdown("### Chat with Jacob Isaacson\nAsk about Jacob's background, skills, or career. \n🛡️ *All chats are logged for improvement purposes.*")

    gr.ChatInterface(
        fn=me.chat_stream,
        chatbot=gr.Chatbot(show_copy_button=True),
        examples=["What is Jacob's experience with AI?", "Tell me about his recent projects."],
        type="messages"
    )

if __name__ == "__main__":
    iface.launch()